2024 Annual Report for Authorization 8808

Atlantic Power - Williams Lake Power Plant

Jacob Steyl

Executive Summary

This Report details the Environmental Emissions from January 1, 2024 to December 31, 2024 and fulfils the requirement of section 3.6 of Authorization 8808 [1].

No rail ties or greater than 1% construction and demolition (C&D) waste were used as feedstock during the reporting period. A total of 284,462 wet tonnes of clean biomass was incinerated during 4,179 hours of normal operation.

During this time two discrete monitoring sessions (one for Air Discharge from the Stack and one for Ash Analysis) were performed. The test results were compared against the levels in Permit 8808 and the Hazardous Waste Regulation, and no exceedances of any of the parameters in Schedules A and D of the Permit measured.

Continuous Emissions Monitoring System (CEMS) measurements were also taken as required by the Permit throughout this Period, with no exceedances recorded.

Respectfully,

Jacob Steyl, P.Eng

January 2, 2025

Table of Contents

2
2

Nomenclature and Abbreviations

C&D - Construction and Demolition waste

MoE - Ministry of Environment

NO₂ - Nitrogen Dioxide

NO_x - Nitrogen Oxides

O₂ - Molecular Oxygen

PAH - Polycyclic Aromatic Hydrocarbons

TEQ - Toxic Equivalency

USEPA - United States Environmental Protection Agency

hr - Hour

kg/s - Kilograms per Second

lb/hr - Pounds per Hour

m³/s - Cubic Meter per second

mg/kg - Milligrams per Kilogram (1 ppm)

mg/L - Milligrams per Liter

mg/m³ - Milligrams per cubic Meter

pg/g – Picogram per Gram (0.001ppb)

ppb - Parts Per Billion

ppm - Parts Per Million (1,000 ppb)

ton/hr - Imperial Ton per Hour

tonnes/hr - Metric Tonnes per Hour

1 Introduction

An amendment was issued for permit 8808 on 18 September 2019 to Atlantic Power Preferred Equity Ltd located at 4455 Mackenzie Ave N, Williams Lake, B.C., V2G 4R7. The revised permit calls for an Annual Report outlined in Section 3.6 of the Permit [1].

Jacob Steyl P.Eng, Maintenance Manager and Chris Turner, Controls Specialist, were responsible for collecting data and compiling this report. A. Lanfranco & Associates Inc. and Bureau Veritas conducted discrete monitoring outlined in sections 3.1.2 Schedule A and 3.1.3 Schedule D of the Permit [1].

The reporting window for this Report is 00:00 on 1 January 2024 to 00:00 1 January 2025. The Plant was curtailed for extended periods during the year, as show in Figure 1-1 and Table 2-1.

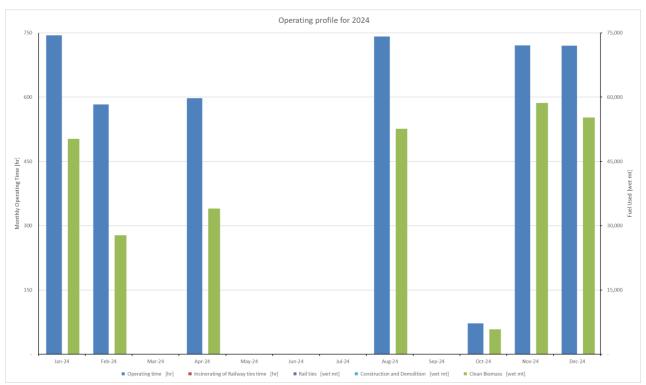


Figure 1-1: Normal Operating Profile for 2024

As no rail tie material was used as feedstock during the reporting period – Test Regimes Schedule A and D apply.

Corrective and preventative maintenance, as well as calibrations, were performed on the Air Emissions Controls and Continuous Emissions Monitoring System (CEMS) equipment of the Authorized Works during the reporting period.

2 Monthly Operating Hours

Table 2-1 shows the operating time and time incinerating railway ties for each month.

Table 2-1: Operating hours per month

	Operating time ¹	Incinerating of Railway ties time ²
	hr	hr
Jan-2024	744	0
Feb-2024	583	0
Mar-2024	0	0
Apr-2024	633	0
May-2024	0	0
Jun-2024	0	0
Jul-2024	0	0
Aug-2024	742	0
Sep-2024	0	0
Oct-2024	72	0
Nov-2024	721	0
Dec-2024	720	0
2024 Totals	4,179	0

3 Fuel

The fuel usage for the reporting period is shown in Table 3-1.

Table 3-1: Monthly and Annual Amounts of Fuel

	Rail ties Construction and Demolition Clean Biomass		
	wet tonnes	wet tonnes	wet tonnes
Jan-2024	0	0	50,278
Feb-2024	0	0	27,789
Mar-2024	0	0	0
Apr-2024	0	0	35,860
May-2024	0	0	0
Jun-2024	0	0	0
Jul-2024	0	0	0
Aug-2024	0	0	52,611
Sep-2024	0	0	0
Oct-2024	0	0	5,855
Nov-2024	0	0	58,659
Dec-2024	0	0	55,231
2024 Totals	0	0	284,462

¹ Operating time for Figure 1-1 and Table 2-1 is taken as combusting-biomass and breaker-closed time

2

² Number of hours incinerating rail ties or greater than 1% construction and demolition waste

4 Continuous Emissions Monitoring

4.1 Sulphur Oxides

No rail ties or greater than 1% C&D waste was used as feedstock during the reporting period, therefore no monitoring for Sulphur Oxides was required or conducted.

4.2 Nitrogen Oxides

The maximum hourly Nitrogen Oxides (NO_x) as Nitrogen Dioxide (NO_2) per month and average for the month at 8% O_2 is show Table 4-1. The Permitted hourly average is 320 mg/m³ at 8% O_2 [1].

Table 4-1: Maximum hourly NO_x as NO₂ per month and average for the Month

	Maximum Hourly Average mg/m³	Monthly Average mg/m³
Jan-2024	250	212
Feb-2024	233	197
Mar-2024	-	1
Apr-2024	269	209
May-2024	-	•
Jun-2024	-	•
Jul-2024	-	•
Aug-2024	309	268
Sep-2024	-	•
Oct-2024	305	280
Nov-2024	279	260
Dec-2024	303	264

The average NO_x emissions for the year was 238 mg/m³ at 8% O₂. The maximum hourly average for the year is 309 mg/m³ at 8%O₂, below the Permitted level.

4.3 Hydrochloric Acid

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period, therefore no monitoring for Hydrochloric Acid was required or conducted.

4.4 Combustion Temperature

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period, therefore no monitoring of Combustion Temperature was required or conducted.

5 Discrete Monitoring

5.1 Air Emissions Stack Test

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period: Only Schedule A applies.

The permitted levels under Schedule A [1] is stated in Table 5-1.

A. Lanfranco & Associates Inc was retained to perform an Emission Compliance Survey and Monitoring Report, as per Schedule A of the Permit. The Triplicate test average results for the listed parameters for the Main Stack on April 10, 2024 are summarised in Table 5-1. The complete report can be found in Appendix A – Stack Particulate Test.

Table 5-1: Schedule A Discrete Monitoring Results

Parameter	Test Average	Permit Limits	
Rate of Discharge (m³/s)	81.5	110	
Particulate (mg/m³ @ 8% O₂)	3.32	20	

Both parameter measures are below permitted levels.

5.2 Ash Testing

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period: Only Schedule D applies.

The permitted levels as per Schedule D [1] are stated in Table 5-2.

Bureau Veritas was commissioned to perform ash analysis on a single ash sample collected before ash conditioning during normal operation. The original ash sample taken on 10 April, 2024 contained too much Carbon for an effective extraction of Polycyclic Aromatic Hydrocarbons (PAH) and Dioxin/Furan testing. A repeat sample was taken on 22 April, 2024. Both reports are in Appendix B - Ash Analysis Reports.

The results from the test are summarised in Table 5-2.

Table 5-2: Schedule D Discrete Monitoring Results

Parameter	10 Apr 2024	22 Apr 2024	Permitted Limits [2]
Arsenic (mg/L)	<	<	2.5
Barium (mg/L)	2.32	1.88	100
Boron (mg/L)	1.87	2.34	500
Cadmium (mg/L)	<	<	0.5
Chromium (mg/L)	<	<	5
Copper (mg/L)	<	v	100
Lead (mg/L)	<	<	5
Mercury (mg/L)	<	v	0.1
Selenium (mg/L)	<	<	1
Silver (mg/L)	<	<	5
Uranium (mg/L)	<	<	10
Zinc (mg/L)	0.22	«	500
Dioxin/Furan TEQ (ppb)	No sample	0.197	100
PAH TEQ (ppm)	No sample	0.065	100

Parameter values marked with a less-than sign (<) are below the Reportable Detection Limit.

All the parameters measured were well below the values stipulated in the Hazardous Waste Regulation [2] and within the expected range (smaller than $+1\sigma$) from historical ash testing results.

5.3 Discrete testing conditions

The average steam flow when the Ash Test sample was collected on April 10, 2024 was 558.1 klb/hr (70.3 kg/s). This meets the Operating Conditions requirements stipulated in section 3.3 of the Permit.

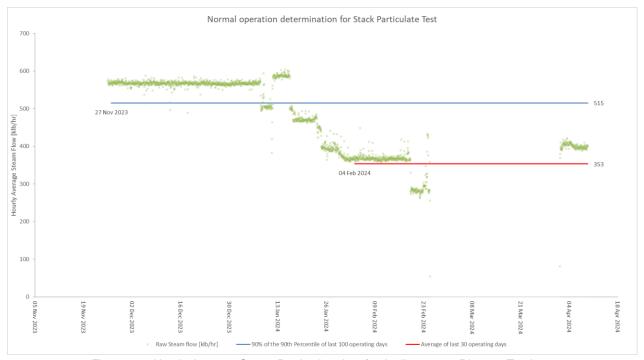
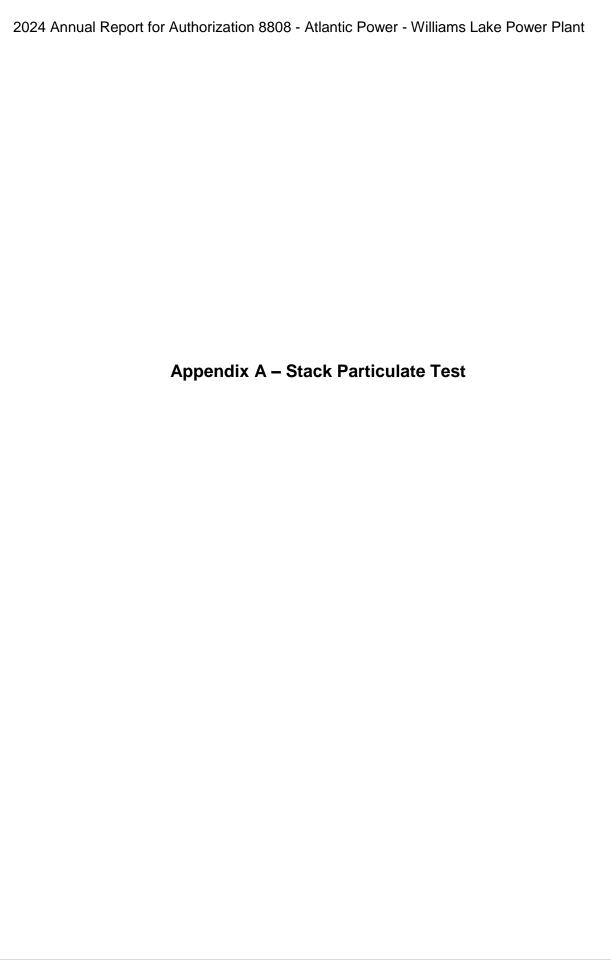
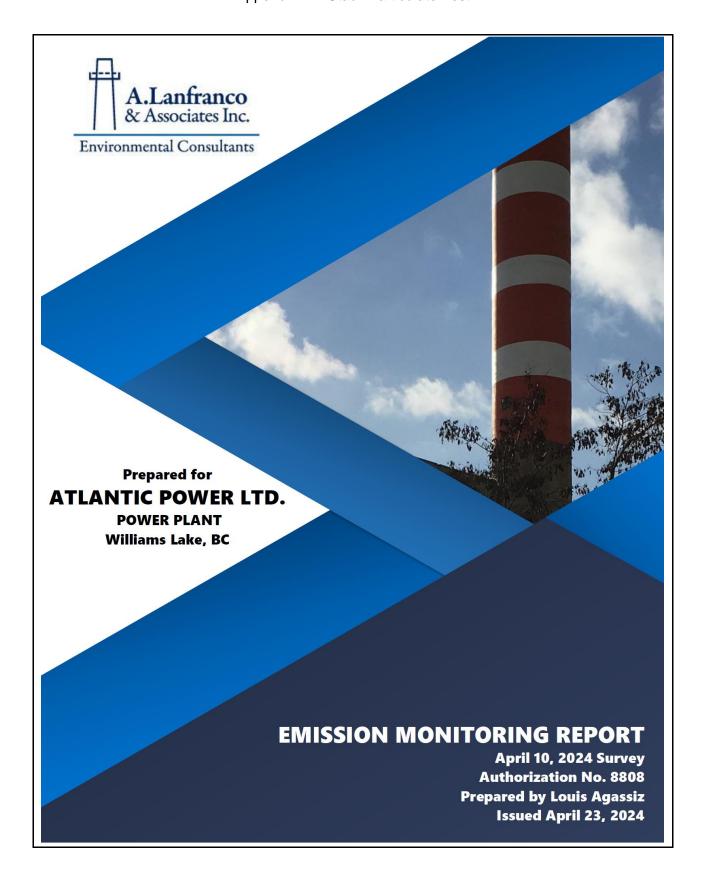


Figure 5-1: Hourly Average Steam Production data for April 10, 2024 Discrete Testing

6 Exceedances


No exceedances were recorded under normal operating conditions during the reporting period.


7 References

- [1] Ministry of Environment, "Permit 8808 Amended 18 September 2019," Environment Canada, Williams Lake, 2016.
- [2] Ministry of Attorney General, Hazardous Waste Regulation BC Reg 63/88, Victoria: Queens Printer, 1988.

Appendices

Appendix A – Stack Particulate Test	8
Appendix B - Ash Analysis Reports	54

CERTIFICATION

The field monitoring for this survey was conducted by certified stack test technicians as required by the British Columbia Ministry of Environment (BC MOE) Field Sampling Manual. The field crew consisted of:

Mr. J. Ching (certified) and Mr. J. Dennis.

The report was prepared by Mr. L. Agassiz using reporting principles and guidelines generally acceptable to BC MOE.

The field crew and A. Lanfranco and Associates Inc. certify that the test methods used were BC MOE approved reference methods for the parameters investigated.

Report reviewed on April 18, 2024 by:

Mr. Mark Lanfranco, CST President | Owner

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

TABLE OF CONTENTS

SU	MMARY	1
1	TEST PROGRAM ORGANIZATION and INTRODUCTION	2
2	PROCESS DESCRIPTION	3
3	METHODOLOGY	3
3	3.1 Sampling Techniques	3
3	3.2 Analytical Techniques	7
4	RESULTS	7
5	DISCUSSION OF RESULTS	10

APPENDICES

Appendix 1 – Computer Outputs of Measured and Calculated Data

Appendix 2 – Calculations

Appendix 3 – Analytical Data

Appendix 4 – Field Data Sheets

Appendix 5 – Site Map

Appendix 6 – Calibration Data and Certifications

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

SUMMARY

The following table presents the triplicate test average results for the listed parameters for the Biomass fuelled boiler stack on April 10, 2024.

Average	Permit Limits
3.87	
3.32	20
1.13	
4890	
81.5	110
5.81	
15.3	
	3.87 3.32 1.13 4890 81.5

All results are at standard conditions of 20 °C and 101.325 kPa (dry)

The 3-run average boiler stack results for particulate matter (3.32 mg/Sm 3 @ 8% O₂) is slightly higher than the previous results from August 2023 (2.97 mg/Sm 3 @ 8% O₂).

The 3-run average flowrate on the boiler stack for this survey is less than August 2023 (81.5 compared to 94.3 m³/min) and is below the permitted limit. The variability year to year is not significant and well within the range of outcomes during representative operating conditions.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

Data page 1: Particulate and Flowrate for 10 Apr 2024

1 TEST PROGRAM ORGANIZATION and INTRODUCTION

Plant Testing Coordinator: Mr. Jacob Steyl

Maintenance Manager

4455 Mackenzie Avenue North Williams Lake, B.C. Canada V2G 5E8

Tel: (250) 267-2281

Email: steyl@atlanticpower.com

Project Manager/Sampling Mr. Mark Lanfranco

President | Owner

A. Lanfranco and Associates Inc.

101-9488 189 St

Surrey, B.C. Canada V4N 4W7

Tel: (604) 881-2582

Email: mark.lanfranco@alanfranco.com

Sampling Crew: Mr. J. Ching - A. Lanfranco and Associates Inc.

Mr. J. Dennis - A. Lanfranco and Associates Inc.

Atlantic Power Corporation commissioned A. Lanfranco & Associates Inc. to conduct an emission survey at their Power Plant in Williams Lake, BC. Emission tests were conducted on a waste-wood fired co-generation power plant authorized by British Columbia Ministry of Environment (BC MOE) Permit PA-8808.

On April 10, 2024, triplicate emission tests were performed for the following parameters:

- particulate concentration and emission rate
- discharge rate (flow rate)

Contractor:

• gas composition (CO₂, O₂ and moisture)

A. Lanfranco and Associates was responsible for the gravimetric analysis for this survey. Justin Ching, the lab manager for ALAA can be reached at 604-881-2582.

This report contains details of the test results and methodologies utilized.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

2 PROCESS DESCRIPTION

The process under investigation during this survey is a wood fuelled Boiler (E218415) discharging through a 3.5-meter stack. The process discharges to atmosphere following emission control by multiclones, and a five-field electrostatic precipitator.

On April 10, 2024, the facility was operating close to the 90th percentile capacity relative to the previous 100 days. Operational data can be found in Table 2 of the results section.

3 METHODOLOGY

The sampling and analytical methods used throughout this survey conform to the procedures outlined in the BC source testing code and the BC air analytical manual. The following table shows the methodology followed.

<u>Parameter</u>	Reference Method
Sample and Velocity traverse points	EPS 1/RM/8 A Determination of Sampling Site and Traverse Points
Velocity and flowrate	EPS 1/RM/8 B Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)
Gas molecular weight (O ₂ /CO ₂)	EPA Method 3 Gas Analysis for the Determination of Dry Molecular Weight
Flue gas Moisture	EPS 1/RM/8 D Determination of Moisture Content
Particulate Matter	EPA Method 5 Determination of Particulate Matter Emissions from Stationary Sources

3.1 Sampling Techniques

Sampling of particulate (EPA Method 5) from the Main Stack was conducted using CAE and Apex sampling trains equipped with heated filter assemblies and a heated four-foot probe (Fig. 1). The impinger sections of the sampling trains were charged with de-ionized water for moisture determination. Cyclones were not used as part of the sampling apparatus.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

The stack was checked for cyclonic flow using methods outlined in the source test code. No cyclonic flow condition existed.

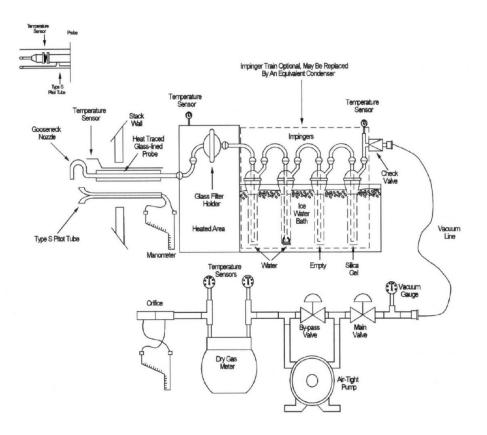
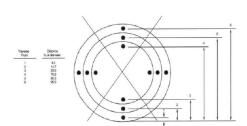


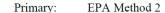
Figure 1: Method 5 Particulate Train

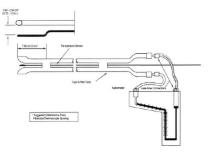

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

EPA Method 1

Sampling Site and Traverse Points

This method is designed to aid in the representative measurement of pollutant emissions and/or total volumetric flow rate from a stationary source. A measurement site where the effluent stream is flowing in a known direction is selected, and the cross-section of the stack is divided into a number of equal areas. Traverse points are then located within each of these equal areas. At Williams Lake, four traverses of 3 points for a total of 12 points were measured per test.


Primary:


Figure 2. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.

Each point (equal area method) was sampled for 5 minutes (figure 4/4a) resulting in final sample volumes of about 1.0 cubic meters.

Stack Gas Velocity and Volumetric Flow Rate

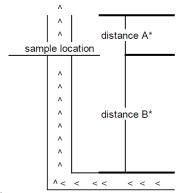
The average gas velocity in a stack or duct is determined from the gas density and from the measurement of velocity pressure with an S-type pitot tube. A standard pitot tube may be used where plugging of the tube openings due to particulate matter and/or moisture is not likely to occur. Stack gas volumetric flow rate is determined from measurements of stack gas velocity, temperature, absolute pressure, dry gas composition, moisture content, and stack diameter.

Figure 3. Type S Pitot Tube Manometer Assembly

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

Figure - 4 Location of Traverse Points in Circular Stacks

(inches from inside w all to traverse point)


Client Stack I.D.: Atlantic Power

Diameter (inches) 138
Total Points 12
of Ports Used 4
Points / Traverse 3

Diameters Upstream: > 2

Diameters Downstream: > 8

Point	Distance from Wall
1	6.1
2	20.1
3	40.8

 * distance A : duct diameters upstream from flow disturbance

* distance B: duct diameters downstream from flow disturbance

< < < : flow direction

Figure 4a <u>Location of Traverse Points in Circular Stacks</u>

(percent of diameter from inside w all to traverse point)

Traverse Point Number on a	Number of Traverse Points on a Diameter				Number of Traverse Points on a Dia			Number of Traverse Points on a		
Diameter	2	4	6	8	10	12				
1	14.6%	6.7%	4.4%	3.2%	2.6%	2.1%				
2	85.4%	25.0%	14.6%	10.5%	8.2%	6.7%				
3		75.0%	29.6%	19.4%	14.6%	11.8%				
4		93.3%	70.4%	32.3%	22.6%	17.7%				
5			85.4%	67.7%	34.2%	25.0%				
6			95.6%	80.6%	65.8%	35.6%				
7				89.5%	77.4%	64.4%				
8				96.8%	85.4%	75.0%				
9					91.8%	82.3%				
10					97.4%	88.2%				
11						93.3%				
12						97.9%				

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

A.Lanfranco & Associates Inc.

Molecular Weight by Gas Analysis

Primary:

EPA Method 3/3a

An integrated or grab sample is extracted from a single point in the gas stream and analyzed for its components using a Fyrite analyzer, a gas chromatograph, or calibrated continuous analyzers.

Moisture Content

Primary:

EPA Method 4

A gas sample is extracted from a single point in the enclosed gas stream being sampled. The moisture is condensed and its weight measured. This weight, together with the volume of gas sampled, enables the stack gas moisture content to be calculated.

3.2 Analytical Techniques

Gravimetric analysis of the particulate samples was conducted by A. Lanfranco and Associates Inc. at their Surrey laboratory. All filters were conditioned by 105 °C drying, desiccation for 24 hours, and weighing of the particulate.

Probe washings were evaporated to dryness in porcelain dishes, desiccated for 24 hours and weighed. Blanks were carried through all procedures.

4 RESULTS

The results of the particulate and stack parameters were calculated using a computer program consistent with reporting requirements of BC MOE. Standard conditions used were 20 $^{\circ}$ C and 101.325 kPa (dry). Particulate concentrations were corrected to 8% O₂.

The "actual" flowrates results are volumetric flowrates at stack conditions. Detailed test results are presented in Table 1. Table 2 shows the operating conditions. Supporting data is presented in the Appendices. Calculations are presented in Appendix 2.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

TABLE 1: MAIN STACK EMISSION RESULTS

Parameter	Test 1	Test 2	Test 3	Average
Test Date	10-Apr-24	10-Apr-24	10-Apr-24	
Test Time	10:03 - 11:25	11:42 - 12:48	13:01 - 14:06	
Duration (minutes)	60	60	60	60
Particulate (mg/Sm³)	4.60	4.96	2.06	3.87
Particulate (mg/Sm ³ @ 8% O ₂)	3.93	4.28	1.75	3.32
Particulate (kg/hr)	1.34	1.46	0.61	1.13
Particulate (kg/day)	32.2	34.9	14.5	27.2
Flowrate (Sm ³ /min)	4862	4895	4901	4886
Flowrate (Sm ³ /sec)	81.0	81.6	81.7	81.4
Flowrate (Am ³ /min)	9231	9192	9288	9237
Temperature (°C)	147	148	148	147
O ₂ (vol % dry)	5.78	5.98	5.68	5.81
CO ₂ (vol % dry)	15.1	15.0	15.9	15.3
H ₂ O (vol %)	18.6	17.5	18.3	18.1
Isokinetic Variation (%)	101	99	100	100

All results are at standard conditions of 20 °C and 101.325 kPa (dry)

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

TABLE 2: OPERATING CONDITIONS

	Steam Flow	90th percentile of Steam Flow	Steam Flow
	10-Apr-24	Prev. 100 days	Prev. 30 days
	(K lbs./hour)	(K lbs./hour)	(K lbs./hour)
Boiler Stack	557	572	353

The average steam flow for the tests was 557.3 klb/hr, which is 97% of the 90th percentile of the last 100 operating days and 158% of the average steam flow for the last 30 full operating days.

According to authorization number 8808, the sampling must be conducted when the operating conditions are as close as reasonably practical to the 90th percentile for the previous 100 operating days and greater than the average for the previous 30 full operating days.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

Data page 2: Steam Flow for 10 Apr 2024

5 DISCUSSION OF RESULTS

The average particulate result for this survey was 3.32 mg/Sm^3 @ $8\% \text{ O}_2$ and is well below the permitted level of 20 mg/Sm^3 @ $8\% \text{ O}_2$. The results for particulate matter are quite comparable to previous results from this source. The results do not include condensable particulate matter.

The average flow rate measurement of $81.5 \text{ Sm}^3/\text{sec}$ was also within the allowable limit of $110 \text{ Sm}^3/\text{sec}$.

On the test day the weather was warm and dry. Winds were calm. There were no environmental factors which impacted the testing.

There were no technical problems encountered in sample collection or analysis. Samples were collected isokinetically at all points and sampling equipment was operated in a normal steady manner during testing. The test results, therefore, are considered to be an accurate representation of emission characteristics for the process conditions maintained on the test date.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

APPENDIX 1 COMPUTER OUTPUTS OF MEASURED AND CALCULATED DATA	

A. Lanfranco and Associates Inc. - Emission Report

Client:Atlantic PowerDate:10-Apr-24Jobsite:Williams Lake, B.C.Run:1 - ParticulateSource:Main StackRun Time:10:03 - 11:25

Particulate Concentration: 4.6 mg/dscm 0.0020 gr/dscf

2.4 mg/Acm 0.0011 gr/Acf

Emission Rate: 1.34 Kg/hr 2.960 lb/hr

Sample Gas Volume: 1.0211 dscm 36.059 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 100.9 %

Flue Gas Characteristics

Moisture: 18.60 %

 $\begin{tabular}{lll} \textbf{Temperature} & 146.9 \ ^{\circ}\text{C} & 296.3 \ ^{\circ}\text{F} \end{tabular}$

Flow 4862.2 dscm/min 171708 dscf/min 81.04 dscm/sec 2861.8 dscf/sec

9231.2 Acm/min 325999 Acf/min

Velocity 15.944 m/sec 52.31 f/sec

 $\textbf{Gas Analysis} \hspace{1.5cm} 5.78 \hspace{.1cm} \% \hspace{.1cm} O_2 \hspace{1.5cm} 15.13 \hspace{.1cm} \% \hspace{.1cm} CO_2$

30.651 Mol. Wt (g/gmole) Dry 28.298 Mol. Wt (g/gmole) Wet

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 10-Apr-24 Jobsite: Williams Lake, B.C. Run: 1 - Particulate Main Stack **Run Time:** 10:03 - 11:25 Source:

Control Unit (Y)	0.9793	Gas Analysis (Vol. %)):
Nozzle Diameter (in.)	0.2570	CO_2	O_2
Pitot Factor	0.8412	16.00	4.90
Baro. Press. (in. Hg)	27.76	15.00	5.80
Static Press. (in. H ₂ O)	-0.32	14.50	6.50
Stack Height (ft)	200	15.00	5.90
Stack Diameter (in.)	138.0	$Average = \underline{15.13}$	<u>5.78</u>
Stack Area (sq.ft.)	103.869		

Total Gain (grams) 175.0

Impinger 4 (grams)

Impinger 1 (grams) 138.0 Impinger 2 (grams) 28.0 Impinger 3 (grams)

0.0

9.0

Condensate Collection:

Minutes Per Point 5.0 Collection: Port Length (inches) 8.0

Minutes Per Reading

5.0

Filter (grams) 0.0006 Washings (grams) 0.0041Impinger (grams) 0.0000 Total (grams) 0.0047

						Dry Ga	as Temperatu	re	Wall	Wall	
Traverse	Point	Time (min.)	Dry Gas Meter (ft²)	Pitot ^P (in. H ₂ O)	Orifice ^H (in. H ₂ O)	Inlet (°F)	Outlet (°F)	Stack (°F)	Dist.	Isokin. (%)	
		0.0	8.000								
1	1	5.0	11.360	0.590	1.43	60	60	297	6.1	100.9	
	2	10.0	14.630	0.550	1.34	63	63	296	20.1	101.0	
	3	15.0	17.670	0.470	1.16	65	65	290	40.8	100.7	
		0.0	17.670								
2	1	5.0	21.110	0.600	1.48	68	68	297	6.1	100.9	
	2	10.0	24.480	0.570	1.41	70	70	298	20.1	101.1	
	3	15.0	27.520	0.460	1.14	71	71	293	40.8	100.9	
		0.0	27.520								
3	1	5.0	31.070	0.620	1.55	76	76	298	6.1	101.0	
	2	10.0	34.520	0.580	1.45	78	78	299	20.1	101.1	
	3	15.0	37.690	0.490	1.23	78	78	296	40.8	100.8	
		0.0	37.690								
4	1	5.0	41.270	0.620	1.56	81	81	299	6.1	100.9	
	2	10.0	44.770	0.590	1.49	82	82	299	20.1	101.0	
	3	15.0	47.905	0.470	1.19	82	82	294	40.8	100.9	
			Average:	0.551	1.369	72.8	72.8	296.3		100.9	

A. Lanfranco and Associates Inc. - Emission Report

Client:Atlantic PowerDate:10-Apr-24Jobsite:Williams Lake, B.C.Run:2 - ParticulateSource:Main StackRun Time:11:42 - 12:48

Particulate Concentration: 5.0 mg/dscm 0.0022 gr/dscf

2.6 mg/Acm 0.0012 gr/Acf

4.3 mg/dscm (@ 8% O2) 0.0019 gr/dscf (@ 8% O2)

Emission Rate: 1.46 Kg/hr 3.209 lb/hr

Sample Gas Volume: 1.0088 dscm 35.626 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 99.1 %

Flue Gas Characteristics

Moisture: 17.54 %

 $\begin{tabular}{lll} \textbf{Temperature} & 147.7 \ ^{\circ}\text{C} & 297.8 \ ^{\circ}\text{F} \end{tabular}$

Flow 4894.7 dscm/min 172858 dscf/min 81.58 dscm/sec 2881.0 dscf/sec

81.58 dscm/sec 2881.0 dscf/sec 9192.3 Acm/min 324625 Acf/min

Velocity 15.877 m/sec 52.09 f/sec

 $\textbf{Gas Analysis} \hspace{1.5cm} 5.98 \hspace{.1cm} \% \hspace{.1cm} O_2 \hspace{1.5cm} 15.00 \hspace{.1cm} \% \hspace{.1cm} CO_2$

30.639 Mol. Wt (g/gmole) Dry 28.422 Mol. Wt (g/gmole) Wet

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

A. Lanfranco and Associates Inc. - Emission Report

Client:Atlantic PowerDate:10-Apr-24Jobsite:Williams Lake, B.C.Run:2 - ParticulateSource:Main StackRun Time:11:42 - 12:48

Gas Analysis (Vol. %): Control Unit (Y) 0.9793 Nozzle Diameter (in.) 0.2570 CO_2 O_2 Pitot Factor 0.8412 15.00 6.00 15.00 6.10 Baro. Press. (in. Hg) 27.76 15.00 Static Press. (in. H_2O) -0.32 6.00 15.00 5.80 Stack Height (ft) 200 Stack Diameter (in.) 138.0 $Average = \underline{15.00}$ 5.98 Stack Area (sq.ft.) 103.869

 $\frac{5.98}{\text{Total Gain (grams)}} = \frac{5.98}{161.0}$

Condensate Collection:

Impinger 1 (grams) 143.0

Impinger 2 (grams) 10.0

0.0

8.0

Impinger 3 (grams)

Impinger 4 (grams)

Minutes Per Point 5.0
Port Length (inches) 8.0 Collection:

5.0

Minutes Per Reading

Filter (grams) 0.0009

Washings (grams) 0.0041

Impinger (grams) 0.0000

Total (grams) 0.0050

						Dry Ga	as Temperatu	re	Wall	
Traverse	Point	Time (min.)	Dry Gas Meter (ft²)	Pitot ^P (in. H ₂ O)	Orifice ^H (in. H ₂ O)	Inlet (°F)	Outlet (°F)	Stack (°F)	Dist.	Isokin. (%)
		0.0	48.191							
1	1	5.0	51.740	0.620	1.53	80	80	298	6.1	99.1
	2	10.0	55.200	0.590	1.46	81	81	300	20.1	99.0
	3	15.0	58.320	0.480	1.19	78	78	293	40.8	99.0
		0.0	58.320							
2	1	5.0	61.820	0.610	1.50	78	78	300	6.1	99.0
	2	10.0	65.210	0.570	1.40	79	79	300	20.1	99.0
	3	15.0	68.330	0.480	1.19	79	79	295	40.8	98.9
		0.0	68.330							
3	1	5.0	71.810	0.600	1.48	79	79	299	6.1	99.0
	2	10.0	75.180	0.560	1.38	80	80	300	20.1	99.1
	3	15.0	78.280	0.470	1.17	80	80	295	40.8	99.1
		0.0	78.280							
4	1	5.0	81.740	0.590	1.45	80	80	300	6.1	99.2
	2	10.0	85.080	0.550	1.36	81	81	300	20.1	98.9
	3	15.0	88.124	0.450	1.12	81	81	294	40.8	99.2
		+	Average:	0.548	1.353	79.7	79.7	297.8		99.1

A. Lanfranco and Associates Inc. - Emission Report

Client:Atlantic PowerDate:10-Apr-24Jobsite:Williams Lake, B.C.Run:3 - ParticulateSource:Main StackRun Time:13:01 - 14:06

Particulate Concentration: 2.1 mg/dscm 0.0009 gr/dscf

1.1 mg/Acm 0.0005 gr/Acf

Emission Rate: 0.61 Kg/hr 1.335 lb/hr

Sample Gas Volume: 1.0194 dscm 36.001 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 100.0 %

Flue Gas Characteristics

Moisture: 18.27 %

 $\begin{tabular}{lll} \textbf{Temperature} & 147.8 \ ^{\circ}\text{C} & 298.0 \ ^{\circ}\text{F} \end{tabular}$

Flow 4900.8 dscm/min 173070 dscf/min 81.68 dscm/sec 2884.5 dscf/sec

81.68 dscm/sec 2884.5 dscf/sec 9288.0 Acm/min 328006 Acf/min

Velocity 16.042 m/sec 52.63 f/sec

 $\textbf{Gas Analysis} \hspace{1.5cm} 5.68 \hspace{.1cm} \% \hspace{.1cm} O_2 \hspace{1.5cm} 15.88 \hspace{.1cm} \% \hspace{.1cm} CO_2$

30.767 Mol. Wt (g/gmole) Dry $28.434 \,\, \text{Mol. Wt (g/gmole) Wet}$

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 10-Apr-24 Jobsite: Williams Lake, B.C. Run: 3 - Particulate Main Stack **Run Time:** 13:01 - 14:06 Source:

Control Unit (Y)	0.9793	Gas Analysis (Vol. %):
Nozzle Diameter (in.)	0.2570	CO_2	O_2
Pitot Factor	0.8412	16.00	5.80
Baro. Press. (in. Hg)	27.76	16.00	5.80
Static Press. (in. H ₂ O)	-0.32	16.00	5.40
Stack Height (ft)	200	15.50	5.70
Stack Diameter (in.)	138.0	$Average = \underline{15.88}$	5.68
Stack Area (sq.ft.)	103.869		

Total Gain (grams) 171.0

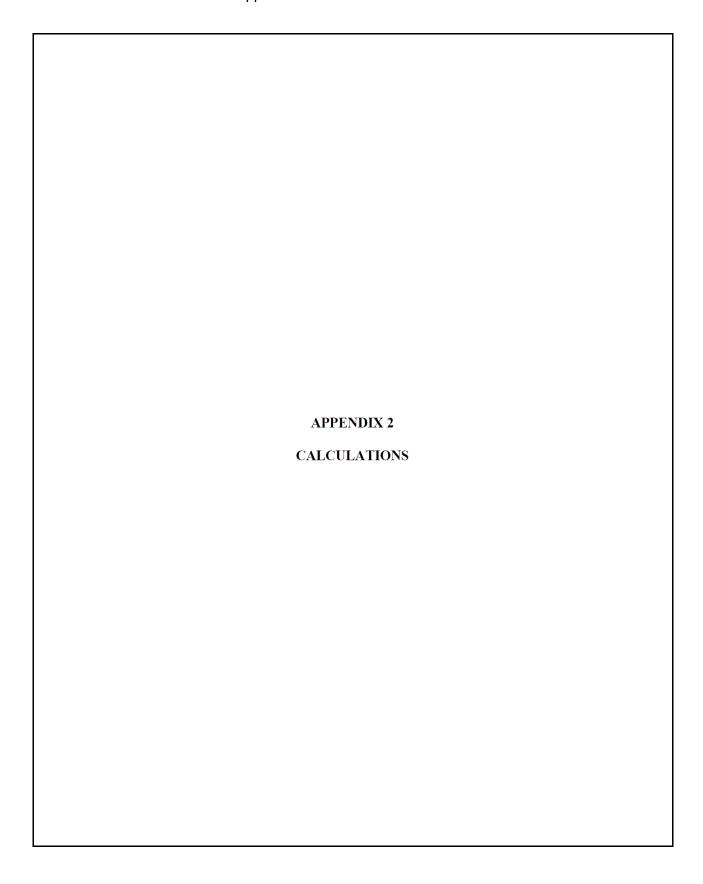
Impinger 4 (grams)

Impinger 1 (grams) 150.0 Impinger 2 (grams) 12.0 Impinger 3 (grams)

0.0

9.0

Condensate Collection:


Minutes Per Point 5.0 Collection: Port Length (inches) 8.0

5.0

Minutes Per Reading

Filter (grams) 0.0002Washings (grams) 0.0019Impinger (grams) 0.0000 Total (grams) 0.0021

						Dry G	as Temperatu	re	Wall	
Traverse	Point	Time (min.)	Dry Gas Meter (ft²)	Pitot ^P (in. H ₂ O)	Orifice ^H (in. H ₂ O)	Inlet (°F)	Outlet (°F)	Stack (°F)	Dist.	Isokin. (%)
		0.0	88.398							
1	1	5.0	91.900	0.600	1.49	82	82	297	6.1	99.9
	2	10.0	95.310	0.570	1.41	82	82	299	20.1	99.9
	3	15.0	98.420	0.470	1.17	83	83	296	40.8	99.9
		0.0	98.420							
2		5.0		0.590	1.47	84	0.4	200	6.1	99.9
2	1		101.900				84	299		
	2	10.0	105.330	0.570	1.42	85	85	300	20.1	100.0
	3	15.0	108.480	0.480	1.20	85	85	297	40.8	99.8
		0.0	108.480							
3	1	5.0	112.140	0.640	1.60	88	88	299	6.1	100.1
	2	10.0	115.710	0.610	1.53	88	88	300	20.1	100.1
	3	15.0	118.930	0.490	1.24	89	89	294	40.8	100.1
		0.0	118.930							
4	1	5.0	122.540	0.620	1.56	90	90	300	6.1	100.0
	2	10.0	126.090	0.600	1.51	90	90	300	20.1	100.0
	3	15.0	129.246	0.470	1.19	90	90	295	40.8	100.0
			Average:	0.559	1.399	86.3	86.3	298.0		100.0

Appendix 2 Calculations

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-12 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 13-27 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 28-30 were used to calculate the volumetric flowrate of the stack flue gas.

2.1 Contaminant Concentration Calculations
$$c = \frac{m}{V_{std}}$$
 Equation 1
$$m_{part} = m_{filter} + m_{pw}$$
 Equation 2
$$m_i = m_{ana,i} - m_{blank}$$
 Equation 3
$$V_{std} = \frac{V_{std(imp)}}{35.315}$$
 Equation 4
$$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$$
 Equation 5
$$V_{samp} = V_{final} - V_{tnit}$$
 Equation 6
$$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$$
 Equation 7
$$\Delta H_{ave} = \frac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}, where \ n = the \ number \ of \ points$$
 Equation 8
$$OC = \frac{20.9 - \% O_{2c}}{20.9 - \% O_{2m}}$$
 Equation 9
$$CO2C = \frac{\% CO_{2c}}{\% CO_{2m}}$$
 Equation 10
$$\% O_{2m} = \frac{1}{n} \sum_{i=1}^{n} \% O_{2i}, where \ n = the \ number \ of \ O_2 \ measurements$$
 Equation 11
$$\% CO_{2m} = \frac{1}{n} \sum_{l=1}^{n} \% CO_{2i}, where \ n = the \ number \ of \ CO_2 \ measurements$$
 Equation 12

Appendix 2 Calculations

Where,

С

m = Contaminant mass m_i = Net analytical mass (mg, ng, or μ g) $m_{ana,i}$ = Analytical mass (mg, ng, or μ g) m_{blank} = Blank analytical mass (mg, ng, or μ g) m_{part} = Total particulate mass (mg)

= Contaminant concentration

 m_{filter} = Net particulate gain from filter (mg) m_{pw} = Net particulate gain from probe wash (mg) $V_{std(imp)}$ = Sample volume at standard conditions (ft³) V_{std} = Sample volume at standard conditions (m³) V_{samp} = Sample volume at actual conditions (ft³)

 V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_{m} = Gas meter temperature (°F) $T_{m(ave)}$ = Average gas meter temperature (°F)

 P_m = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

 ΔH_{ave} = Average of individual point orifice pressures (inches of H₂O) $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H₂O)

OC = Oxygen correction factor (dimensionless)

CO2C = Carbon dioxide correction factor (dimensionless)

%O2c = Oxygen concentration to correct to (% dry basis)

%O_{2m} = Average measured stack gas oxygen concentration (% dry basis)
 %CO_{2c} = Carbon dioxide concentration to correct to (% dry basis)
 %CO_{2m} = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

A.Lanfranco & Associates Inc.

Appendix 2 Calculations

A2.2 Isokinetic Variation Calculations

Appendix 2 Calculations

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
, where $n =$ the number of points

Equation 26

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Equation 27

Where,

 $A_n = Nozzle area (ft^2)$

d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H₂O)

 P_g = Stack Static pressure (inches of H_2O) P_{stk} = Absolute stack pressure (inches of H_g) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

%CO₂ = Stack gas carbon dioxide concentration (% dry basis)
 %O₂ = Stack gas oxygen concentration (% dry basis)
 B_{wo} = Stack gas water vapour, proportion by volume

 V_{cond} = Total volume of water vapor collected, corrected to standard conditions

(ft³)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg) V_{stk} = Average flue gas velocity (ft/sec) V_{i} = Individual point flue gas velocity (ft/sec) V_{nz} = Average velocity at nozzle(ft/sec) V_{nzi} = Individual point velocity at nozzle(ft/sec)

 Iso_i = Individual point isokinetic variation (%) Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft^3 /min)

A.Lanfranco & Associates Inc.

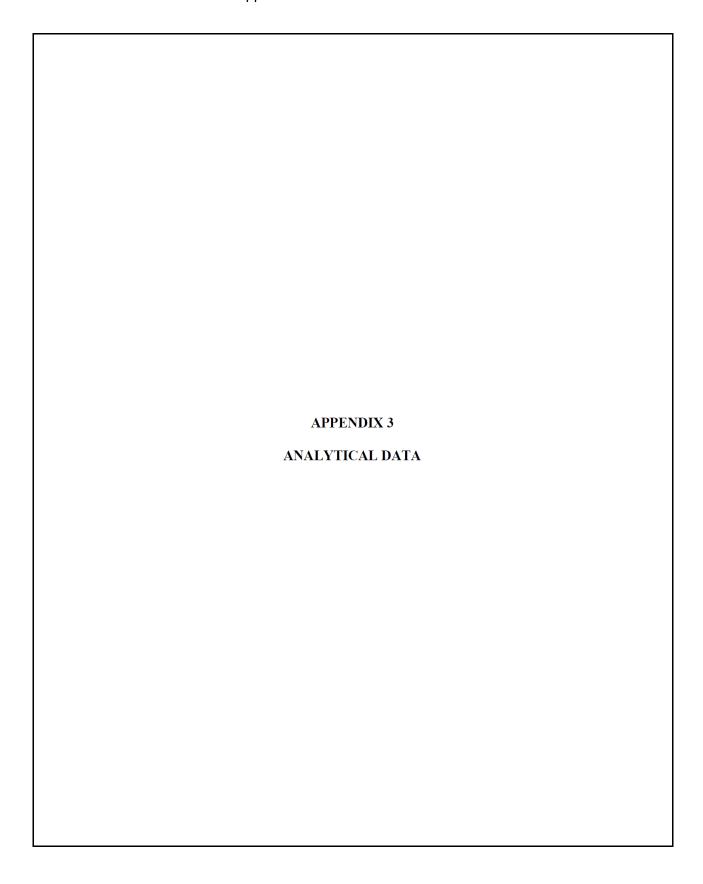
Appendix 2 Calculations

A2.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$
 Equation 28

$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
 Equation 29

$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 30


Where,

 $Q_A = Actual flowrate (Am^3/min)$

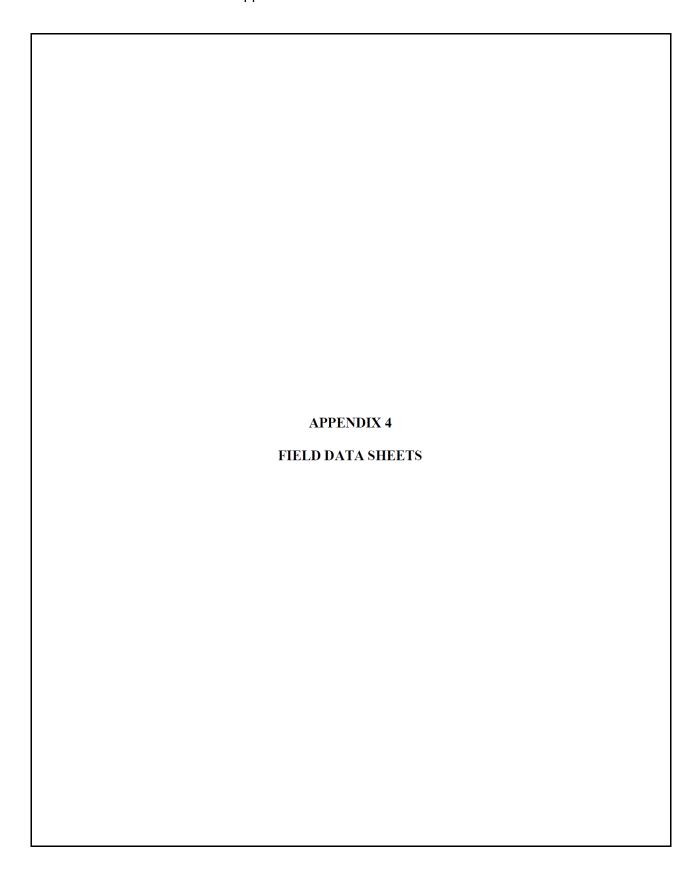
Qs = Flowrate (m^3 /min) at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)

d = Diameter of stack (inches)

Appendix 3 Analytical Data

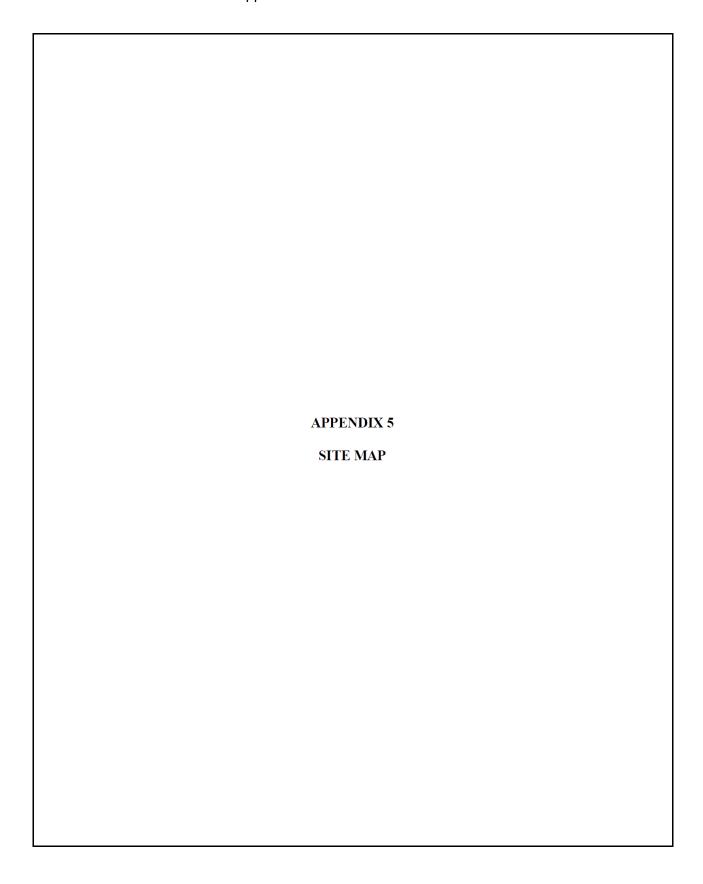
GRAVIMETRIC ANALYTICAL RESULTS

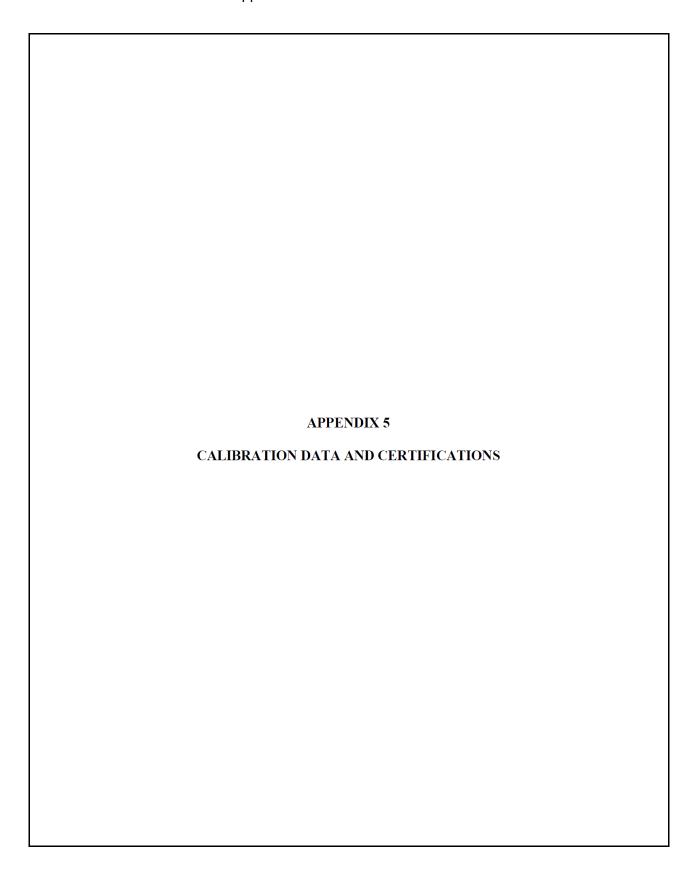

10-Apr-24 Williams Lake, B.C Client: Sample Date: Atlantic Power Source: Main Stack Location:

A. Lanfranco & Associates Standard Operating Procedure: SOP 1.2.1 Gravimetric determination of total particulate matter

				Blank Corrected
	Initial (g)	Final (g)	Net (g)	Net (g)
Filters				
Run 1	0.3608	0.3613	0.0005	0.0006
Run 2	0.3621	0.3629	0.0008	0.0009
Run 3	0.3612	0.3613	0.0001	0.0002
Blank	0.3582	0.3581	-0.0001	
Probe Washes				
Run 1	120.9023	120.9060	0.0037	0.0041
Run 2	110.6549	110.6586	0.0037	0.0041
Run 3	123.3067	123.3082	0.0015	0.0019
Blank	99.4994	99.4990	-0.0004	
	Run 1	Run 2	Run 3	
Silica Gels	9.0	8.0	9.0	
Task	Personnel	Date	Quality Control	Y/N
Fiter Recovery:	J. Ching	12-Apr-24	Adequate PW volume:	Y
PW Initial Analysis:	J. Ching	12-Apr-24	No sample leakage:	Y
PW, Filter and Gel Final Analysis:	J. Dennis	17-Apr-24	Filter not compromised:	Y
Data entered to computer:	L. Agassiz	17-Apr-24		

Comments:
No problems encountered in sample analysis.


101 - 9488 189 Street, Surrey, BC (604) 881-2582


TOTAL GAIN (mL)		
(mt.) 738	Pyrites O 1 % Vol. % 4 7 5 9 5 9	
MPINGER INITIAL VOLUMES (mL)	CO ₂ vol.% 15.0 15.0	
IMPINGER, INITIA VOLUMES (mL) Imp. #1 (CC) Imp. #2 (CC) Imp. #3 (Imp. #4 (GC) Imp. #5 Imp. #6	Pump Vac.	Ш
0155	Impinger Exit 338 40 44 44 44 443	
DIAMETER, IN. 0.25 CP 0.84/2. -0.32"	253 254 254 251 251 251	
DIAMETER CP (P) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	7-emperature 9- Probe 254 252 252 255 255	28%
PROBE 5/170 PROBE 5/4 PORT LENGTH \$\frac{g}{g}\$." STATIC PRESSURE. IN. HZO STACK DIAMETER [3\mathbb{S}^4]. STACK HEIGHT \$\mathbb{O}^2]. INITIAL LEAK TEST \$\frac{0}{0}.002. FINAL LEAK TEST \$\frac{0}{0}.002. FINAL LEAK TEST \$\frac{0}{0}.002.	Stack Stack	
PROBE 57 PPROBE 57 PPROBE 5.04 PPRORT LENGTH STATIC PRESSUU STACK HEIGHT STACK HEIGHT INITIAL LEAK TESTINAL LEAK T	Dry Gas Dry Gas 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	Orifice AH IN. H ₂ O 1.14 1.14 1.14 1.19 1.19	
V 0 % T % S S Y S S S Y S S S Y S S S Y S S S S	Pitot AP IN H ₂ O O.55 O.55 O.47 O.56 O.49 O.49 O.49 O.49	
CLIENT A CAN PER SOURCE MAIN STACK POWER SOURCE MAIN STACK MAIN TO BATE A CAN TO PREMA SOURCE MAIN TO SOURCE IN THE TO THE SOURCE IN THE TO A SSUMED MOISTURE, BW 18%	8.000 3.000 3.000 4.63 7.67 3.07 3.07 3.07 3.69 4.77 4.77 4.77 4.77 4.77	
CLIENT A CALL SOUVE SOURCE Main 514" FARMETER INDIN NO ANTWALL DATE ANTIN 20174 OPERATOR: 34,541, (14,14) CONTROL UNIT CAE ALL BAROMETRIC PRESSURE, IN. HG ASSUMED MOISTURE, BW \$50	Clock Time 10:03 15 15 15 15 15 15 15 15 15 15 15 15 15	
CLIENT A SOURCE PARAMETE PARAMETE CONTROL CONTROL ASSUMED ASSUMED	Point - WH - WH - WH	

DIAMETER, IN. 0, 15 70 IMPINGER, INITIAL FINAL TOTAL GAIN	Imp. #1 (00 243 143	100 -0.30 vi lmp. #3		(100) 3 to 15" Instream Diameters	100	Pump Vac. Fyrites	Probe Box Impinger IN. Hg CO2 O2 Exit Vol. % Vol. % Vol. %	244 354 46 2, 150 60	256 259 46 2.	15.0 6.1	\vdash		153	757 351 47 77	H	45 44 46 3						
NOZZLE STO	10 TO 10	PORT LENGTH 8" STATIC PRESSURE, IN. H2O	STACK DIAMETER 13811 STACK HEIGHT 9001		FINAL LEAK TEST 0		Dry Gas Stack Outlet	868 08	99	78 300	79 300	000			0000	166 S					Thy	
	14.	Sun 2	Y 0,9793	7	<i>y</i> ,	Pitot AP (IN. H ₂ O IN. H ₂ O		0.48 1.19	051, 190	0.57		0.56	0,47	0.59	0.45						
CLIENT AND ALL PAIR	SOURCE / MIN STACK	DATE ADV, 10, 2024	CONTROL UNITCAL ALL	SAROMETRIC PRESSURE IN HO	ASSUMED MOISTURE, BW (5.6%)	Clock Time Dry Gas Meter ft	Point 11:42 48.191	ht. 15	3 5 58.32	18.19	2 25 (5.2)	1		3 45 78.08	1 50 81.74		84: CI 043		73			

X		1
5	(mL) (SD (12) (DD (12	
	TAN STATE OF	
	INITIAL (ML) 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	IMPINGER, INITIAL IMPINGER, INITIAL IMD. #2 IMD. #3 IMD. #3 IMD. #4 IMD. #5 IMD. #5 IMD. #5 IMD. #5 IMD. #6 IM	
	Impinger Exit 449 74 74 74 74 74 74 74 74 74 74 74 74 74	
	DIAMETER. IN. 0.35 CP 0.84(2-2) Probe Box	
	PROBE 5/13/0 PROBE 5/13/0 PROBE 5/13/0 PROBE 5/13/0 STATIC PRESSURE, IN, H2O STACK DIAMETER 1/5/8 " STACK HEIGHT 2/0/1 INITIAL LEAK TEST 0/0/0/0 FINAL LEAK TEST 0/0/0/0 STACK HEIGHT 2/0/1 STACK DIAMETER 1/5/8 " STACK DIAMETER 1/5	
	ονί fice ΔΗ N. H ₂ O (1/4) (1	
1	Phot AP N. H.O O. 49 O. 49 O. 49 O. 49	
ociates Inc.		
A. Lanfranco and Associates Inc.	CLIENT AHGATIC POLLEY SOURCE AGAIN STANK PARAMETER FROM NO PACHICAL OF ALLO TO THE ALLO TO THE ALLO TO THE ALLO TO THE ALLO THE ALLO TO THE ALLO TH	
A. Lar	SOURCE PARAME OPERA CONTRIBUTE OF PARAMETERS	

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Christian De La O
Date: 09-Jan-24

Signature:

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
ST01	0.1320	0.1315	0.1340	0.0025	0.1325	0.0000958
ST05	0.1750	0.1775	0.1775	0.0025	0.1767	0.0001702
SS-1	0.1775	0.1815	0.1785	0.0040	0.1792	0.0001751
SS-7	0.1805	0.1785	0.1775	0.0030	0.1788	0.0001744
ST11	0.2050	0.2059	0.2049	0.0010	0.2053	0.0002298
SS-8	0.2051	0.2066	0.2070	0.0019	0.2062	0.0002320
ST10	0.2175	0.2170	0.2185	0.0015	0.2177	0.0002584
SS-18	0.2325	0.2315	0.2312	0.0013	0.2317	0.0002929
ST15	0.2430	0.2430	0.2415	0.0015	0.2425	0.0003207
SS-2	0.2470	0.2445	0.2465	0.0025	0.2460	0.0003301
SS-3	0.2485	0.2490	0.2490	0.0005	0.2488	0.0003377
SS-24	0.2500	0.2475	0.2475	0.0025	0.2483	0.0003364
В	0.2515	0.2525	0.2515	0.0010	0.2518	0.0003459
SS-14	0.2478	0.2491	0.2477	0.0014	0.2482	0.0003360
ST30	0.2510	0.2525	0.2525	0.0015	0.2520	0.0003464
ST20	0.2560	0.2575	0.2575	0.0015	0.2570	0.0003602
A	0.2542	0.2529	0.2549	0.0020	0.2540	0.0003519
SS-9	0.2719	0.2680	0.2715	0.0039	0.2705	0.0003990
ST40	0.2865	0.2865	0.2855	0.0010	0.2862	0.0004466
SS-30	0.2995	0.2980	0.3015	0.0035	0.2997	0.0004498
SS-13	0.3060	0.3070	0.3065	0.0010	0.3065	0.0005124
ST60	0.3060	0.3070	0.3050	0.0020	0.3060	0.0005124
ST50	0.3125	0.3090	0.3095	0.0025	0.3103	0.0005167
SS-10	0.3195	0.3155	0.3185	0.0040	0.3178	0.0005510
SS-327	0.3320	0.3300	0.3305	0.0020	0.3308	0.0005970
ST65	0.3385	0.3370	0.3385	0.0020	0.3380	0.0006231
ST66	0.3395	0.3375	0.3390	0.0013	0.3387	0.0006251
ST80	0.3670	0.3675	0.3670	0.0020	0.3672	0.0007353
ST75	0.3670	0.3725	0.3700	0.0005	0.3672	0.0007534
SS-5	0.3725	0.3725	0.3745	0.0025	0.3735	0.0007609
SS-16	0.3725	0.3765	0.3745	0.0020	0.3775	0.0007773
ST76	0.3750	0.3765	0.3780	0.0015	0.3765	0.0007773
ST85	0.4035	0.4020	0.4010	0.0035	0.4022	0.0007731
SS-15	0.4035	0.4020	0.4040	0.0025	0.4022	0.0008990
DD	0.4070	0.4070	0.4040	0.0030	0.4052	0.0008954
		0.4040	0.4060	0.0020		
SS11	0.4225				0.4217	0.0009698
ST70	0.4270	0.4260	0.4270	0.0010 0.0030	0.4267	0.0009929 0.0011349
ST86	0.4565	0.4575	0.4545		0.4562	
C SS-491	0.4941	0.4936	0.4961	0.0025	0.4946	0.0013342
	0.4980	0.4960	0.4980	0.0020	0.4973	0.0013490
SS-49	0.5010	0.5010	0.5015	0.0005	0.5012	0.0013699
SS-6	0.4985	0.4985	0.4995	0.0010	0.4988	0.0013572
SS-492	0.4955	0.4955	0.4975	0.0020	0.4962	0.0013427
ST90	0.5050	0.5065	0.5045	0.0020	0.5053	0.0013928
ST92	0.5055	0.5040	0.5065	0.0025	0.5053	0.0013928
SS-558	0.5600	0.5600	0.5605	0.0005	0.5602	0.0017114
ST96	0.5605	0.5580	0.5615	0.0035	0.5600	0.0017104
SS-635	0.6435	0.6415	0.6430	0.0020	0.6427	0.0022527
SS-12	0.7460	0.7460	0.7470	0.0010	0.7463	0.0030380

Where:

D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in. (a)

Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in. (b)

(c) Average = average of D1, D2 and D3

Pitot Tube Calibration

 Date:
 09-Jan-24
 Temp (R): 539

 Pbar (in.Hg):
 29.84
 Dn (in.): 0.25

Pitot ID:	5A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.130	0.180	24.1	0.8413	0.0000
0.230	0.320	32.1	0.8393	0.0020
0.340	0.470	39.0	0.8420	0.0007
0.470	0.650	45.8	0.8418	0.0005
0.550	0.760	49.6	0.8422	0.0008
		Average:	0.8413	0.0008

Pitot ID:	5A-3			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.150	0.200	25.9	0.8574	0.0085
0.230	0.310	32.1	0.8527	0.0039
0.360	0.490	40.1	0.8486	0.0002
0.420	0.580	43.3	0.8425	0.0064
0.580	0.800	50.9	0.8430	0.0059
		Average:	0.8488	0.0050

Pitot ID:	5A-2			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.120	0.170	23.2	0.8318	0.0095
0.230	0.320	32.1	0.8393	0.0019
0.350	0.490	39.6	0.8367	0.0045
0.440	0.600	44.3	0.8478	0.0065
0.570	0.772	50.5	0.8507	0.0094
		Average:	0.8412	0.0064

Pitot ID:	5A-4			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.140	0.190	25.0	0.8498	0.0086
0.230	0.320	32.1	0.8393	0.0019
0.320	0.450	37.8	0.8348	0.0064
0.440	0.610	44.3	0.8408	0.0004
0.520	0.720	48.2	0.8413	0.0001
	_	Average:	0.8412	0.0035

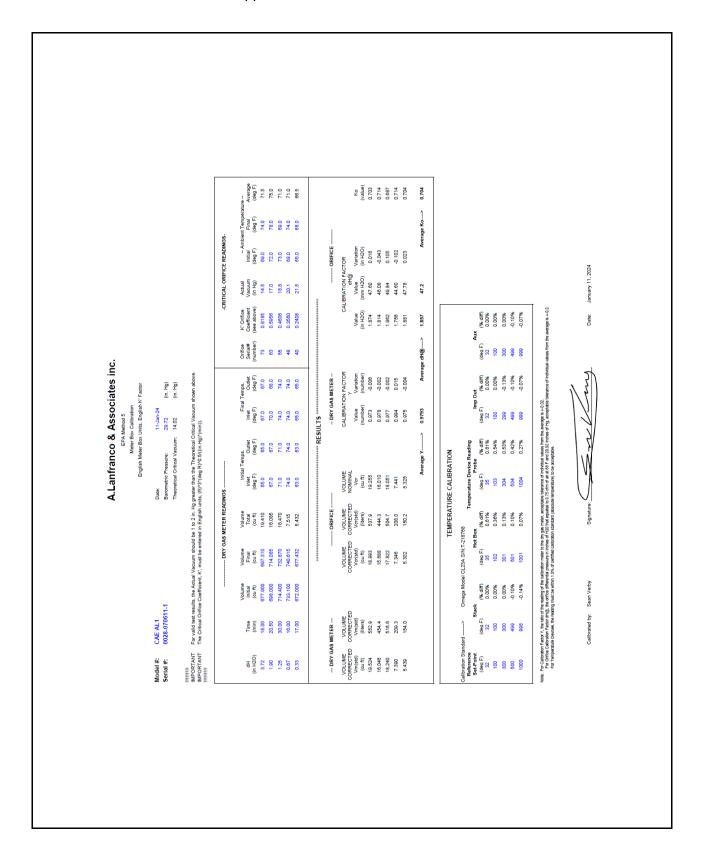
Pitot ID:	ST 5A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.125	0.170	23.6	0.8489	0.0008
0.250	0.340	33.4	0.8489	0.0008
0.340	0.460	39.0	0.8511	0.0030
0.425	0.590	43.6	0.8402	0.0079
0.540	0.730	49.1	0.8515	0.0033
	_	Average:	0.8481	0.0032

Pitot ID:	5A-5			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.170	0.230	27.6	0.8511	0.0100
0.240	0.340	32.8	0.8318	0.0093
0.330	0.460	38.4	0.8385	0.0026
0.470	0.650	45.8	0.8418	0.0007
0.550	0.760	49.6	0.8422	0.0011
		Average:	0.8411	0.0048

Pitot ID:	ST 5B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	15.7	0.8478	0.0012
0.125	0.180	23.6	0.8250	0.0216
0.200	0.280	29.9	0.8367	0.0099
0.360	0.500	40.1	0.8400	0.0066
0.680	0.840	55.1	0.8907	0.0441
		Average:	0.8466	0.0167

Pitot ID:									
Reference	S-Type	Air	Pitot	Deviation					
Pitot	Pitot	Velocity	Coeff.	(absolute)					
(in H2O)	(in H2O)	(ft/s)	Ср						
		Average :							

Date:


Jan.9, 2024

Calibrated by: Jeremy Gibbs

Signature:

45

^{*} Average absolute deviation must not exceed 0.01.

	BAROMETER CALIBRATION FORM								
		Pbar E	Pbar Env Canada Devid		hes of Hg)	Difference			
					Elevation				
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)			
LA	15-Jan-24	99.8	29.46	29.37	29.44	0.02			
DS	15-Jan-24	99.8	29.46	29.36	29.43	0.03			
CL	15-Jan-24	99.8	29.46	29.37	29.44	0.02			
JC	15-Jan-24	99.8	29.46	29.34	29.41	0.05			
LF	15-Jan-24	99.8	29.46	29.36	29.43	0.03			
SH	15-Jan-24	99.8	29.46	29.35	29.42	0.04			
CDO	15-Jan-24	99.8	29.46	29.34	29.41	0.05			
JG	15-Jan-24	99.8	29.46	29.32	29.39	0.07			
ML	15-Jan-24	99.8	29.46	29.34	29.41	0.05			
BL	15-Jan-24	99.8	29.46	29.36	29.43	0.03			

Calibrated by: Louis Agassiz Signature: ______ Date: 11-Jan-24

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74 metric e.html

800 799 799.1 799.1 799.1 799.1 799.1 799.2 500 499.2 499.1 499.5 499 501 500 499.2 A. LANFRANCO and ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS **TEMPERATURE DEVICE CALIBRATIONS TEMPERATURE CALIBRATION FORM** Louis Agassiz 200 Calibrated by: Date: Signature: 100 99 99.6 99.7 99.7 99.7 99.7 99.8 99.8 99.8 Owaga HH11A 3 Soldar Neadulig Variation Omega HH11A 3 300132 300% Omega HH11A 4 200167 32 0.00% Omega HH11A 6 600059 33 0.20% TPI 341K 7 2.0315E+10 31 0.20% TPI 341K 8 2.0315E+10 31 0.00% Cont Cmpny 10 102008464 31 0.20% TPI 341K 14 409426 32.5 0.10% TPI 341K 16 400120029 31 0.20% TPI 341K 16 2.0329E+10 31 0.20% TPI 341K 20 2.0329E+10 31 0.20% TPI 341K 20 2.0329E+10 31 0.20% TPI 341K 20 2.0329E+10 31 0.20% Reference device is a NIST certified digital thermocouple calibrator 20.20%

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

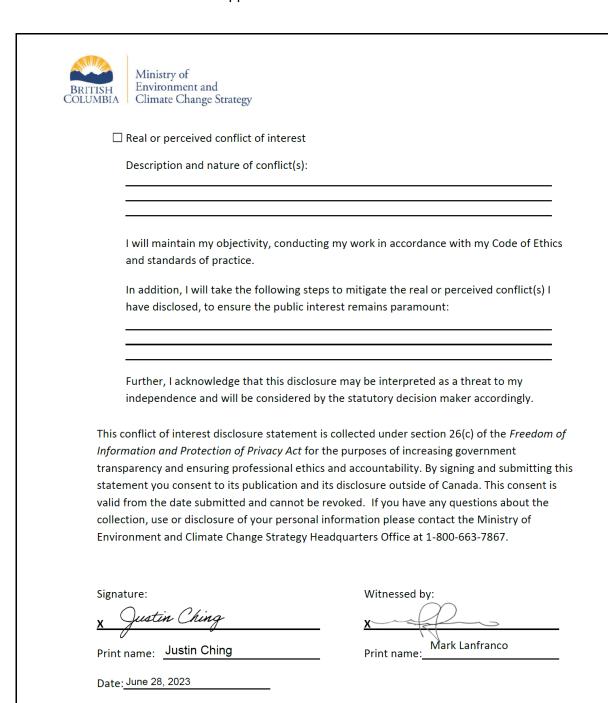
ry legislation, regulations and codes of practice have the ty necessary to fulfill this role.
Justin Ching
Environmental Technician
a professional association in B.C.?
Registration #
ervices: pecialising in air and atmospheric sciences
y. By signing and submitting this statement you consent to its e of Canada. This consent is valid from the date submitted and questions about the collection, use or disclosure of your the Ministry of Environment and Climate Change Strategy 867.
<u>Declaration</u>
e knowledge, skills and experience to provide expert endations in relation to the specific work described above.
Witnessed by:
<u> XDaryl Sampson</u>
Print Name: Daryl Sampson
function under ministry legislation, means an individual who with a professional association, is acting under that organization's code of ethics, ion by that association, and

 through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

July 2019

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.


A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

1 of 2

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

2 of 2

2024 Annual Report for Authorization 8808 - Atlantic Power - Williams Lake Power Plant
Appendix B - Ash Analysis Reports

Site Location: WILLIAMS LAKE POWER PLANT

Your C.O.C. #: C#721953-01-01

Attention: Jacob Steyl

ATLANTIC POWER (WILLIAMS LAKE) LTD.
4465 MACKENZIE AVENUE NORTH
WILLIAMS LAKE, BC
CANADA V2G 5E8

Report Date: 2024/04/19 Report #: R3490028 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C425509 Received: 2024/04/12, 09:28

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Metals - TCLP	1	2024/04/17	2024/04/18	BBY7SOP-00001	EPA 1311, 6020bR2 m
Moisture	1	2024/04/15	2024/04/16	BBY8SOP-00017	BCMOE BCLM Dec2000 m
TCLP pH Measurements	1	N/A	2024/04/17	BBY7SOP-00005	EPA 1311

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Page 1 of 10

Appendix B - Ash Analysis Reports

Site Location: WILLIAMS LAKE POWER PLANT

Your C.O.C. #: C#721953-01-01

Attention: Jacob Steyl

ATLANTIC POWER (WILLIAMS LAKE) LTD.
4465 MACKENZIE AVENUE NORTH
WILLIAMS LAKE, BC
CANADA V2G 5E8

Report Date: 2024/04/19 Report #: R3490028 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C425509 Received: 2024/04/12, 09:28

Encryption Key

Melissa McIntosh Customer Solutions Representative 25 Apr 2024 15:14:20

Please direct all questions regarding this Certificate of Analysis to: Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com

Phone# (604) 734 7276

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Total Cover Pages : 2 Page 2 of 10

PHYSICAL TESTING (SOIL)

Bureau Veritas ID		CMB038		
Sampling Date		2024/04/10 14:00		
COC Number		C#721953-01-01		
			RDL QC Ba	
	UNITS	AC 11	RDL	QC Batch
Physical Properties	UNITS	AC 11	RDL	QC Batch
Physical Properties Moisture	WNITS	1.2	0.30	

 $Page \ 3 \ of \ 10$ Bureau Veritas Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Bureau Veritas ID		CMB038	
Sampling Date		2024/04/10 14:00	
COC Number		C#721953-01-01	
	UNITS	AC 11	QC Batch
TCLP Extraction Procedure			
Initial pH of Sample	pН	12.3	B341171
pH after HCl	pН	11.7	B341171
Final pH of Leachate	pН	9.36	B341171
		2.91	B341171

TCLP METALS (SOIL)

Bureau Veritas ID		CMB038		
C		2024/04/10		
Sampling Date		14:00		
COC Number		C#721953-01-01		
	UNITS	AC 11	RDL	QC Batch
TCLP Extraction Procedure				
Leachate Antimony (Sb)	mg/L	<0.10	0.10	B342502
Leachate Arsenic (As)	mg/L	<0.10	0.10	B342502
Leachate Barium (Ba)	mg/L	2.32	0.10	B342502
Leachate Beryllium (Be)	mg/L	<0.10	0.10	B342502
Leachate Boron (B)	mg/L	1.87	0.10	B342502
Leachate Cadmium (Cd)	mg/L	<0.10	0.10	B342502
Leachate Chromium (Cr)	mg/L	<0.10	0.10	B342502
Leachate Cobalt (Co)	mg/L	<0.10	0.10	B342502
Leachate Copper (Cu)	mg/L	<0.10	0.10	B342502
Leachate Iron (Fe)	mg/L	<0.50	0.50	B342502
Leachate Lead (Pb)	mg/L	<0.10	0.10	B342502
Leachate Mercury (Hg)	mg/L	<0.0020	0.0020	B342502
Leachate Molybdenum (Mo)	mg/L	0.18	0.10	B342502
Leachate Nickel (Ni)	mg/L	<0.10	0.10	B342502
Leachate Selenium (Se)	mg/L	<0.10	0.10	B342502
Leachate Silver (Ag)	mg/L	<0.010	0.010	B342502
Leachate Thallium (TI)	mg/L	<0.10	0.10	B342502
Leachate Uranium (U)	mg/L	<0.10	0.10	B342502
Leachate Vanadium (V)	mg/L	<0.10	0.10	B342502
Leachate Zinc (Zn)	mg/L	0.22	0.10	B342502
Leachate Zirconium (Zr)	mg/L	<0.10	0.10	B342502
RDL = Reportable Detection Li	mit			

 $Page \ 5\ of\ 10$ Bureau Veritas Burnaby: 4606 Canada Way V5G 1K5 Telephone (604) 734-7276 Fax (604) 731-2386

Data page 3: TCLP Metals for 10 Apr 2024

Appendix B - Ash Analysis Reports

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: WILLIAMS LAKE POWER PLANT
Sampler Initials: JS

GENERAL COMMENTS

Sample CMB038 [AC 11]: PAHSIMAV-S cannot be conducted due to "charcoal like" sample matrix. Re-extraction using less sample amount yields similar results.

Results relate only to the items tested.

Page 6 of 10

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: WILLIAMS LAKE POWER PLANT

Sampler Initials: JS

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
B339832	IP1	Method Blank	Moisture	2024/04/16	<0.30		%	
B339832	IP1	RPD	Moisture	2024/04/16	1.3		%	20
B341171	S2L	Method Blank	Initial pH of Sample	2024/04/17	4.95		pН	
			pH after HCl	2024/04/17	NA		pН	
			Final pH of Leachate	2024/04/17	4.95		pН	
			pH of Leaching Fluid	2024/04/17	4.95		pН	
B341171	S2L	RPD	Initial pH of Sample	2024/04/17	0.73		%	N/A
			pH after HCl	2024/04/17	0.58		%	N/A
			Final pH of Leachate	2024/04/17	0.66		%	N/A
			pH of Leaching Fluid	2024/04/17	0		%	N/A
B342502	RLC	Matrix Spike	Leachate Antimony (Sb)	2024/04/18	_	123	%	75 - 125
			Leachate Arsenic (As)	2024/04/18		125	%	75 - 125
			Leachate Barium (Ba)	2024/04/18		115	%	75 - 125
			Leachate Beryllium (Be)	2024/04/18		119	%	75 - 125
			Leachate Boron (B)	2024/04/18		NC	%	75 - 125
			Leachate Cadmium (Cd)	2024/04/18		125	%	75 - 125
			Leachate Chromium (Cr)	2024/04/18		122	%	75 - 125
			Leachate Cobalt (Co)	2024/04/18		119	%	75 - 125 75 - 125
			Leachate Copper (Cu)	2024/04/18		115 NC	%	75 - 125 75 - 125
			Leachate Iron (Fe)	2024/04/18		NC 115	%	
			Leachate Lead (Pb)	2024/04/18		115	%	75 - 125
			Leachate Mercury (Hg)	2024/04/18		118	%	75 - 125
			Leachate Molybdenum (Mo)	2024/04/18		120	%	75 - 125
			Leachate Nickel (Ni)	2024/04/18		119	%	75 - 125
			Leachate Selenium (Se)	2024/04/18		131 (1)	%	75 - 125
			Leachate Silver (Ag)	2024/04/18		114	%	75 - 125
			Leachate Thallium (TI)	2024/04/18		117	%	75 - 125
			Leachate Uranium (U)	2024/04/18		117	%	75 - 125
			Leachate Vanadium (V)	2024/04/18		123	%	75 - 125
			Leachate Zinc (Zn)	2024/04/18		NC	%	75 - 125
			Leachate Zirconium (Zr)	2024/04/18		125	%	75 - 125
B342502	RLC	Spiked Blank	Leachate Antimony (Sb)	2024/04/18		97	%	75 - 125
			Leachate Arsenic (As)	2024/04/18		107	%	75 - 125
			Leachate Barium (Ba)	2024/04/18		99	%	75 - 125
			Leachate Beryllium (Be)	2024/04/18		102	%	75 - 125
			Leachate Boron (B)	2024/04/18		102	%	75 - 125
			Leachate Cadmium (Cd)	2024/04/18		104	%	75 - 125
			Leachate Chromium (Cr)	2024/04/18		101	%	75 - 125
			Leachate Cobalt (Co)	2024/04/18		100	%	75 - 125
			Leachate Copper (Cu)	2024/04/18		99	%	75 - 125
			Leachate Iron (Fe)	2024/04/18		100	%	75 - 125
			Leachate Lead (Pb)	2024/04/18		99	%	75 - 125
			Leachate Mercury (Hg)	2024/04/18		100	%	75 - 125
			Leachate Molybdenum (Mo)	2024/04/18		100	%	75 - 125
			Leachate Nickel (Ni)	2024/04/18		98	%	75 - 125
			Leachate Selenium (Se)	2024/04/18		109	%	75 - 125
			Leachate Silver (Ag)	2024/04/18		94	%	75 - 125
			Leachate Thallium (TI)	2024/04/18		99	%	75 - 125
			Leachate Uranium (U)	2024/04/18		101	%	75 - 125
			Leachate Vanadium (V)	2024/04/18		100	%	75 - 125
			Leachate Variation (V)	2024/04/18		101	%	75 - 125
			Leachate Zinc (Zn)	2024/04/18		101	% %	75 - 125 75 - 125
B342502	RLC	Method Blank	* *		<0.10	100		13 - 125
D3423U2	KLC	wethod Blank	Leachate Antimony (Sb)	2024/04/18	<0.10		mg/L	
			Leachate Arsenic (As)	2024/04/18	<0.10		mg/L	

Page 7 of 10

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: WILLIAMS LAKE POWER PLANT

Sampler Initials: JS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Leachate Barium (Ba)	2024/04/18	<0.10	· ·	mg/L	
			Leachate Beryllium (Be)	2024/04/18	< 0.10		mg/L	
			Leachate Boron (B)	2024/04/18	< 0.10		mg/L	
			Leachate Cadmium (Cd)	2024/04/18	< 0.10		mg/L	
			Leachate Chromium (Cr)	2024/04/18	< 0.10		mg/L	
			Leachate Cobalt (Co)	2024/04/18	< 0.10		mg/L	
			Leachate Copper (Cu)	2024/04/18	< 0.10		mg/L	
			Leachate Iron (Fe)	2024/04/18	< 0.50		mg/L	
			Leachate Lead (Pb)	2024/04/18	< 0.10		mg/L	
			Leachate Mercury (Hg)	2024/04/18	< 0.0020		mg/L	
			Leachate Molybdenum (Mo)	2024/04/18	< 0.10		mg/L	
			Leachate Nickel (Ni)	2024/04/18	< 0.10		mg/L	
			Leachate Selenium (Se)	2024/04/18	< 0.10		mg/L	
			Leachate Silver (Ag)	2024/04/18	< 0.010		mg/L	
			Leachate Thallium (TI)	2024/04/18	<0.10		mg/L	
			Leachate Uranium (U)	2024/04/18	< 0.10		mg/L	
			Leachate Vanadium (V)	2024/04/18	<0.10		mg/L	
			Leachate Zinc (Zn)	2024/04/18	< 0.10		mg/L	
			Leachate Zirconium (Zr)	2024/04/18	<0.10		mg/L	
B342502	RLC	RPD	Leachate Antimony (Sb)	2024/04/18	NC		%	35
			Leachate Arsenic (As)	2024/04/18	NC		%	35
			Leachate Barium (Ba)	2024/04/18	1.4		%	35
			Leachate Beryllium (Be)	2024/04/18	NC		%	35
			Leachate Boron (B)	2024/04/18	0.18		%	35
			Leachate Cadmium (Cd)	2024/04/18	NC		%	35
			Leachate Chromium (Cr)	2024/04/18	NC		%	35
			Leachate Cobalt (Co)	2024/04/18	1.1		%	35
			Leachate Copper (Cu)	2024/04/18	NC		%	35
			Leachate Iron (Fe)	2024/04/18	1.5		%	35
			Leachate Lead (Pb)	2024/04/18	2.8		%	35
			Leachate Mercury (Hg)	2024/04/18	NC		%	35
			Leachate Molybdenum (Mo)	2024/04/18	NC		%	35
			Leachate Nickel (Ni)	2024/04/18	0.031		%	35
			Leachate Selenium (Se)	2024/04/18	NC		%	35
			Leachate Silver (Ag)	2024/04/18	NC		%	35
			Leachate Thallium (TI)	2024/04/18	NC		%	35
			Leachate Uranium (U)	2024/04/18	NC		%	35
			Leachate Vanadium (V)	2024/04/18	NC		%	35
			Leachate Zinc (Zn)	2024/04/18	2.9		%	35
			Leachate Ziric (Zir)	2024/04/18	NC		%	35

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

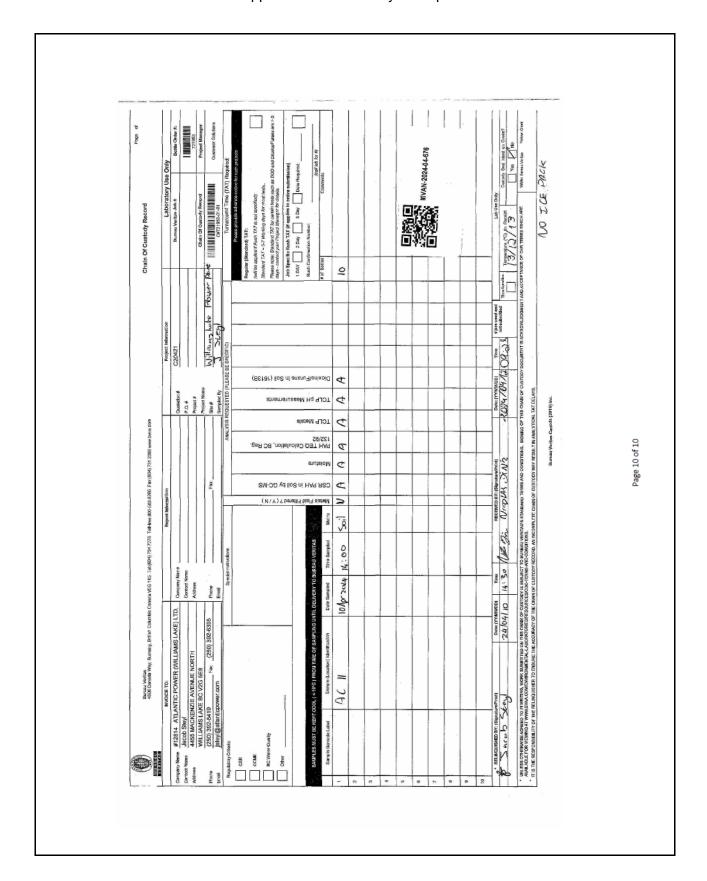
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference \leq 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Page 8 of 10


VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Page 9 of 10

Site Location: WILLIAMS LAKE POWER PLANT

Your C.O.C. #: 08534657

Attention: Jacob Steyl

ATLANTIC POWER (WILLIAMS LAKE) LTD.
4465 MACKENZIE AVENUE NORTH
WILLIAMS LAKE, BC
CANADA V2G 5E8

Report Date: 2024/05/03 Report #: R3495814 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C428023 Received: 2024/04/23, 09:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Metals - TCLP	1	2024/04/25	2024/04/25	BBY7SOP-00001	EPA 1311, 6020bR2 m
Moisture	1	2024/04/23	2024/04/24	BBY8SOP-00017	BCMOE BCLM Dec2000 m
PAH in Soil by GC/MS (SIM)	1	2024/04/23	2024/04/24	BBY8SOP-00022	BCMOE BCLM Jul2017m
PAH TEQ Calculation, BC Reg. 132/92 (2)	1	N/A	2024/04/30	BBY WI-00033	Auto Calc
Total PAH and B(a)P Calculation (3)	1	N/A	2024/04/30	BBY WI-00033	Auto Calc
TCLP pH Measurements	1	N/A	2024/04/25	BBY7SOP-00005	EPA 1311
Dioxins/Furans in Soil (1613B) (1, 4)	1	2024/04/28	2024/05/01	BRL SOP-00410	EPA 1613B m
2378TCDF Confirmation (M8290A/M1613) (1)	1	2024/04/28	2024/05/02	BRL SOP-00406/00410	EPA 8290A m/1613B m

Remarks

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Campobello, 6740 Campobello Road , Mississauga, ON, L5N 2L8
- (2) PAH TEQ = 0.1*benzo(a)anthracene + 1.0*benzo(a)pyrene + 0.1*benzo(b)fluoranthene + 0.1*benzo(k)fluoranthene + 1.1*dibenzo(a,h)anthracene + 0.2*indeno(1,2,3-cd)pyrene (3) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene,
- Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene,

Page 1 of 18

Appendix B - Ash Analysis Reports

Site Location: WILLIAMS LAKE POWER PLANT

Your C.O.C. #: 08534657

Attention: Jacob Steyl

ATLANTIC POWER (WILLIAMS LAKE) LTD. 4465 MACKENZIE AVENUE NORTH WILLIAMS LAKE, BC CANADA V2G 5E8

> Report Date: 2024/05/03 Report #: R3495814 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C428023 Received: 2024/04/23, 09:57

and Benzo(g,h,i)perylene.

Total PAHs in Sediment include (B.C. Reg. 116/2018, Schedule 3.4): Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthylene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(a)pyrene, and Dibenz(a,h)anthracene. (4) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

Encryption Key

Aldean Alicando Customer Solutions Representative 03 May 2024 17:45:23

Please direct all questions regarding this Certificate of Analysis to: Customer Solutions, Western Canada Customer Experience Team

Email: customersolutionswest@bureauveritas.com

Phone# (604) 734 7276

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon $Regions\ responsible\ for\ British\ Columbia\ Environmental\ laboratory\ operations.$

Total Cover Pages : 2 Page 2 of 18

PHYSICAL TESTING (SOIL)

		` '					
Bureau Veritas ID		CML385					
Sampling Date		2024/04/22 08:30					
COC Number		08534657					
	UNITS	AC 11 FLY ASH	RDL	QC Batch			
Physical Properties							
Moisture	%	1.2	0.30	B348112			
RDL = Reportable Detection Limit							

 $Page \ 3 \ of \ 18$ Bureau Veritas Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

SEMIVOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID		CML385		
Sampling Date		2024/04/22 08:30		
COC Number		08534657		
	UNITS	AC 11 FLY ASH	RDL	QC Batch
Calculated Parameters				
PAH Toxicity Equivalency	mg/kg	0.065	0.050	B347975
RDL = Reportable Detection	Limit			

Page~4~of~18 Bureau Veritas Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

Data page 4: PAH TEQ for 22 Apr 2024

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

			` '
Bureau Veritas ID		CML385	
Sampling Date		2024/04/22 08:30	
COC Number		08534657	
	UNITS	AC 11 FLY ASH	QC Batch
TCLP Extraction Procedure			
Initial pH of Sample	pН	12.5	B349089
pH after HCl	pН	12.1	B349089
Final pH of Leachate	pН	9.77	B349089
pH of Leaching Fluid	pН	2.91	B349089

 $Page \ 5 \ of \ 18$ Bureau Veritas Burnaby: 4606 Canada Way V5G 1K5 Telephone (604) 734-7276 Fax (604) 731-2386

DIOXIN AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		CML385						
Sampling Date		2024/04/22						
Sampling Date		08:30						
COC Number		08534657			TOXIC EQU	IVALENCY	# of	
	UNITS	AC 11 FLY ASH	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
DIOXINS								
2,3,7,8-Tetra CDD *	pg/g	46.5	0.673	5.00	1.00	46.5	1	B359234
1,2,3,7,8-Penta CDD *	pg/g	55.1	0.661	25.0	1.00	55.1	1	B359234
1,2,3,4,7,8-Hexa CDD *	pg/g	27.4	0.686	25.0	0.100	2.74	1	B359234
1,2,3,6,7,8-Hexa CDD *	pg/g	25.5	0.738	25.0	0.100	2.55	1	B359234
1,2,3,7,8,9-Hexa CDD *	pg/g	45.7	0.704	25.0	0.100	4.57	1	B359234
1,2,3,4,6,7,8-Hepta CDD *	pg/g	61.0	0.683	25.0	0.0100	0.610	1	B359234
Octa CDD *	pg/g	23.2	0.775	50.0	0.000300	0.00696	1	B359234
Total Tetra CDD *	pg/g	1510	0.673	5.00			15	B359234
Total Penta CDD *	pg/g	926	0.661	25.0			12	B359234
Total Hexa CDD *	pg/g	458	0.709	25.0			6	B359234
Total Hepta CDD *	pg/g	116	0.683	25.0			2	B359234
2,3,7,8-Tetra CDF **	pg/g	<663 (1)	663	5.00	0.100	66.3	0	B359234
1,2,3,7,8-Penta CDF **	pg/g	119	0.702	25.0	0.0300	3.57	1	B359234
2,3,4,7,8-Penta CDF **	pg/g	137	0.600	25.0	0.300	41.1	1	B359234
1,2,3,4,7,8-Hexa CDF **	pg/g	45.9	0.732	25.0	0.100	4.59	1	B359234
1,2,3,6,7,8-Hexa CDF **	pg/g	34.5	0.702	25.0	0.100	3.45	1	B359234
2,3,4,6,7,8-Hexa CDF **	pg/g	23.7	0.712	25.0	0.100	2.37	1	B359234
1,2,3,7,8,9-Hexa CDF **	pg/g	6.00	0.833	25.0	0.100	0.600	1	B359234
1,2,3,4,6,7,8-Hepta CDF **	pg/g	15.5	0.649	25.0	0.0100	0.155	1	B359234
1,2,3,4,7,8,9-Hepta CDF **	pg/g	3.11	0.678	25.0	0.0100	0.0311	1	B359234
Octa CDF **	pg/g	3.48	0.712	50.0	0.000300	0.00104	1	B359234
Total Tetra CDF **	pg/g	4310	0.576	5.00			17	B359234

EDL = Estimated Detection Limit

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Page 6 of 18

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

^{*} CDD = Chloro Dibenzo-p-Dioxin

^{**} CDF = Chloro Dibenzo-p-Furan

⁽¹⁾ RT > 3 seconds - PCDD/DF analysis - Peak detected exceeds expected retention time (from internal standard) by greater than 3 seconds.

DIOXIN AND FURANS BY HRMS (SOIL)

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: WILLIAMS LAKE POWER PLANT

Sampler Initials: JG

Bureau Veritas ID		CML385						
Sampling Date		2024/04/22						
Sampling Date		08:30						
COC Number		08534657			TOXIC EQU	IVALENCY	# of	
	UNITS	AC 11 FLY ASH	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total Penta CDF **	pg/g	1230	0.648	25.0			15	B359234
Total Hexa CDF **	pg/g	277	0.742	25.0			13	B359234
Total Hepta CDF **	pg/g	27.7	0.663	25.0			4	B359234
TCDF Confirmation					,			
Confirmation 2,3,7,8-Tetra CDF **	pg/g	295	0.71	5.0	0.100	29.5		B359235
TOTAL TOXIC EQUIVALENCY	pg/g					197		
Surrogate Recovery (%)							•	
37CL4 2378 Tetra CDD *	%	87						B359234
C13-1234678 HeptaCDD *	%	102						B359234
C13-1234678 HeptaCDF **	%	100						B359234
C13-123478 HexaCDD *	%	91						B359234
C13-123478 HexaCDF **	%	92						B359234
C13-1234789 HeptaCDF **	%	117						B359234
C13-123678 HexaCDD *	%	81						B359234
C13-123678 HexaCDF **	%	92						B359234
C13-12378 PentaCDD *	%	92						B359234
C13-12378 PentaCDF **	%	87						B359234
C13-123789 HexaCDF **	%	98						B359234
C13-234678 HexaCDF **	%	95						B359234
C13-23478 PentaCDF **	%	94						B359234
C13-2378 TetraCDD *	%	78						B359234
C13-2378 TetraCDF **	%	87						B359234
C13-OCDD *	%	90						B359234
Confirmation C13-2378 TetraCDF **	%	66						B359235

EDL = Estimated Detection Limit

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Page 7 of 18

Bureau Veritas Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

Data page 5: Dioxin/Furan TEQ for 22 Apr 2024

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

^{**} CDF = Chloro Dibenzo-p-Furan

^{*} CDD = Chloro Dibenzo-p-Dioxin

Sampler miciais

Bureau Veritas ID		CML385		
Sampling Date		2024/04/22 08:30		
COC Number		08534657		
	UNITS	AC 11 FLY ASH	RDL	QC Batch
TCLP Extraction Procedure				
Leachate Antimony (Sb)	mg/L	<0.10	0.10	B350475
Leachate Arsenic (As)	mg/L	<0.10	0.10	B350475
Leachate Barium (Ba)	mg/L	1.88	0.10	B350475
Leachate Beryllium (Be)	mg/L	<0.10	0.10	B350475
Leachate Boron (B)	mg/L	2.36	0.10	B350475
Leachate Cadmium (Cd)	mg/L	<0.10	0.10	B350475
Leachate Chromium (Cr)	mg/L	<0.10	0.10	B350475
Leachate Cobalt (Co)	mg/L	<0.10	0.10	B350475
Leachate Copper (Cu)	mg/L	<0.10	0.10	B350475
Leachate Iron (Fe)	mg/L	<0.50	0.50	B350475
Leachate Lead (Pb)	mg/L	<0.10	0.10	B350475
Leachate Mercury (Hg)	mg/L	<0.0020	0.0020	B350475
Leachate Molybdenum (Mo)	mg/L	0.19	0.10	B350475
Leachate Nickel (Ni)	mg/L	<0.10	0.10	B350475
Leachate Selenium (Se)	mg/L	<0.10	0.10	B350475
Leachate Silver (Ag)	mg/L	<0.010	0.010	B350475
Leachate Thallium (TI)	mg/L	<0.10	0.10	B350475
Leachate Uranium (U)	mg/L	<0.10	0.10	B350475
Leachate Vanadium (V)	mg/L	<0.10	0.10	B350475
Leachate Zinc (Zn)	mg/L	<0.10	0.10	B350475
Leachate Zirconium (Zr)	mg/L	<0.10	0.10	B350475

Page 8 of 18

Bureau Veritas Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

Data page 6: TCLP Metals for 22 Apr 2024

CSR PAH IN SOIL BY GC-MS (SOIL)

Bureau Veritas ID		CML385		
		2024/04/22		
Sampling Date		08:30		
COC Number		08534657		
	UNITS	AC 11 FLY ASH	RDL	QC Batch
Calculated Parameters				-
Low Molecular Weight PAH`s	mg/kg	<0.13	0.13	B347827
High Molecular Weight PAH`s	mg/kg	<0.13	0.13	B347827
Total PAH	mg/kg	<0.13	0.13	B347827
B[a]P TPE Total Potency Equivalents	mg/kg	0.059	0.010	B347827
Polycyclic Aromatics				
Naphthalene	mg/kg	<0.025 (1)	0.025	B348533
2-Methylnaphthalene	mg/kg	<0.050 (1)	0.050	B348533
Acenaphthylene	mg/kg	<0.013 (1)	0.013	B348533
Acenaphthene	mg/kg	<0.013 (1)	0.013	B348533
Fluorene	mg/kg	<0.050 (1)	0.050	B348533
Phenanthrene	mg/kg	<0.025 (1)	0.025	B348533
Anthracene	mg/kg	<0.010 (1)	0.010	B348533
Fluoranthene	mg/kg	<0.050 (1)	0.050	B348533
Pyrene	mg/kg	<0.050 (1)	0.050	B348533
Benzo(a)anthracene	mg/kg	<0.050 (1)	0.050	B348533
Chrysene	mg/kg	<0.050 (1)	0.050	B348533
Benzo(b&j)fluoranthene	mg/kg	<0.020 (1)	0.020	B348533
Benzo(b)fluoranthene	mg/kg	<0.050 (1)	0.050	B348533
Benzo(k)fluoranthene	mg/kg	<0.050 (1)	0.050	B348533
Benzo(a)pyrene	mg/kg	<0.050 (1)	0.050	B348533
Indeno(1,2,3-cd)pyrene	mg/kg	<0.050 (1)	0.050	B348533
Dibenz(a,h)anthracene	mg/kg	<0.050 (1)	0.050	B348533
Benzo(g,h,i)perylene	mg/kg	<0.13 (1)	0.13	B348533
Surrogate Recovery (%)				
D10-ANTHRACENE (sur.)	%	0 (2)		B348533
D8-ACENAPHTHYLENE (sur.)	%	0 (2)		B348533
D8-NAPHTHALENE (sur.)	%	0.32 (2)		B348533
TERPHENYL-D14 (sur.)	%	0 (2)		B348533
RDL = Reportable Detection Limit				

RDL = Reportable Detection Limit

Page 9 of 18

⁽¹⁾ Detection limits raised based on sample weight or volume used for analysis.

⁽²⁾ Surrogate recovery below acceptance criteria due to matrix interferenceash sample.

Appendix B - Ash Analysis Reports

port Date: 2024/05/03	Site Location: WILLIAMS LAKE POWER PLANT Sampler Initials: JG
	GENERAL COMMENTS
Results relate only to the items tested.	
results relate only to the items tested.	
	Page 10 of 18

BUREAU VERITAS Bureau Veritas Job #: C428023 Report Date: 2024/05/03

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: WILLIAMS LAKE POWER PLANT

Sampler Initials: JG

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
B348112	IP1	Method Blank	Moisture	2024/04/24	<0.30	necovery	%	QC EIIIIICS
B348112	IP1	RPD	Moisture	2024/04/24	0.61		%	20
B348533	MDW	Matrix Spike	D10-ANTHRACENE (sur.)	2024/04/24	0.01	67	%	50 - 140
55 10555		Widelia Spike	D8-ACENAPHTHYLENE (sur.)	2024/04/24		64	%	50 - 140
			D8-NAPHTHALENE (sur.)	2024/04/24		68	%	50 - 140
			TERPHENYL-D14 (sur.)	2024/04/24		68	%	50 - 140
			Naphthalene	2024/04/24		76	%	50 - 140
			2-Methylnaphthalene	2024/04/24		81	%	50 - 140
			Acenaphthylene	2024/04/24		68	%	50 - 140
			Acenaphthene	2024/04/24		75	%	50 - 140
			Fluorene	2024/04/24		74	%	50 - 140
			Phenanthrene	2024/04/24		71	%	50 - 140
			Anthracene	2024/04/24		70	%	50 - 140
			Fluoranthene	2024/04/24		70 72	%	50 - 140
			Pyrene	2024/04/24		72	%	50 - 140
			Benzo(a)anthracene	2024/04/24		72	%	50 - 140
			Chrysene	2024/04/24		74	%	50 - 140
			Benzo(b&j)fluoranthene	2024/04/24		70	% %	50 - 140
			Benzo(b)sfluoranthene	2024/04/24		70	%	50 - 140
			Benzo(k)fluoranthene	2024/04/24		71 72	%	50 - 140 50 - 140
			• •					
			Benzo(a)pyrene	2024/04/24		71	%	50 - 140
			Indeno(1,2,3-cd)pyrene	2024/04/24		74	%	50 - 140
			Dibenz(a,h)anthracene	2024/04/24		70	% %	50 - 140
			Benzo(g,h,i)perylene	2024/04/24		73		50 - 140
B348533	MDW	Spiked Blank	D10-ANTHRACENE (sur.)	2024/04/24		72	%	50 - 140
			D8-ACENAPHTHYLENE (sur.)	2024/04/24		70	%	50 - 140
			D8-NAPHTHALENE (sur.)	2024/04/24		69	%	50 - 140
			TERPHENYL-D14 (sur.)	2024/04/24		72	%	50 - 140
			Naphthalene	2024/04/24		80	%	50 - 140
			2-Methylnaphthalene	2024/04/24		86	%	50 - 140
			Acenaphthylene	2024/04/24		73	%	50 - 140
			Acenaphthene	2024/04/24		79	%	50 - 140
			Fluorene	2024/04/24		79	%	50 - 140
			Phenanthrene	2024/04/24		75	%	50 - 140
			Anthracene	2024/04/24		75	%	50 - 140
			Fluoranthene	2024/04/24		77	%	50 - 140
			Pyrene	2024/04/24		76	%	50 - 140
			Benzo(a) anthracene	2024/04/24		76	%	50 - 140
			Chrysene	2024/04/24		79	%	50 - 140
			Benzo(b&j)fluoranthene	2024/04/24		74	%	50 - 140
			Benzo(b)fluoranthene	2024/04/24		76	%	50 - 140
			Benzo(k)fluoranthene	2024/04/24		76	%	50 - 140
			Benzo(a)pyrene	2024/04/24		75	%	50 - 140
			Indeno(1,2,3-cd)pyrene	2024/04/24		79	%	50 - 140
			Dibenz(a,h)anthracene	2024/04/24		75	%	50 - 140
			Benzo(g,h,i)perylene	2024/04/24		78	%	50 - 140
B348533	MDW	Method Blank	D10-ANTHRACENE (sur.)	2024/04/24		76	%	50 - 140
			D8-ACENAPHTHYLENE (sur.)	2024/04/24		63	%	50 - 140
			D8-NAPHTHALENE (sur.)	2024/04/24		64	%	50 - 140
			TERPHENYL-D14 (sur.)	2024/04/24		79	%	50 - 140
			Naphthalene	2024/04/24	< 0.010		mg/kg	
			2-Methylnaphthalene	2024/04/24	<0.020		mg/kg	
			Acenaphthylene	2024/04/24	< 0.0050		mg/kg	
			Acenaphthene	2024/04/24	< 0.0050		mg/kg	

Page 11 of 18

BUREAU VERITAS Bureau Veritas Job #: C428023 Report Date: 2024/05/03

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: WILLIAMS LAKE POWER PLANT

Sampler Initials: JG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Fluorene	2024/04/24	<0.020		mg/kg	
			Phenanthrene	2024/04/24	< 0.010		mg/kg	
			Anthracene	2024/04/24	< 0.0040		mg/kg	
			Fluoranthene	2024/04/24	< 0.020		mg/kg	
			Pyrene	2024/04/24	< 0.020		mg/kg	
			Benzo(a)anthracene	2024/04/24	< 0.020		mg/kg	
			Chrysene	2024/04/24	<0.020		mg/kg	
			Benzo(b&j)fluoranthene	2024/04/24	<0.020		mg/kg	
			Benzo(b)fluoranthene	2024/04/24	<0.020		mg/kg	
			Benzo(k)fluoranthene	2024/04/24	< 0.020		mg/kg	
			Benzo(a)pyrene	2024/04/24	<0.020		mg/kg	
			Indeno(1,2,3-cd)pyrene	2024/04/24	<0.020		mg/kg	
			Dibenz(a,h)anthracene	2024/04/24	<0.020		mg/kg	
			Benzo(g,h,i)perylene	2024/04/24	< 0.050		mg/kg	
B348533	MDW	RPD	Naphthalene	2024/04/24	NC		%	50
D340333	WIDW	M D	2-Methylnaphthalene	2024/04/24	NC		%	50
			Acenaphthylene	2024/04/24	NC		%	50
			Acenaphthylene	2024/04/24	NC		%	50
			Fluorene	2024/04/24	NC		%	50
			Phenanthrene	2024/04/24	NC		%	50
			Anthracene	2024/04/24	NC		%	50
			Fluoranthene	2024/04/24	NC		%	50
			Pyrene	2024/04/24	NC		% %	50
			Benzo(a)anthracene	2024/04/24	NC		% %	50
								50
			Chrysene	2024/04/24	NC		%	
			Benzo(b&j)fluoranthene	2024/04/24	NC		%	50
			Benzo(b)fluoranthene	2024/04/24	NC		%	50
			Benzo(k)fluoranthene	2024/04/24	NC		%	50
			Benzo(a)pyrene	2024/04/24	NC		%	50
			Indeno(1,2,3-cd)pyrene	2024/04/24	NC		%	50
			Dibenz(a,h)anthracene	2024/04/24	NC		%	50
			Benzo(g,h,i)perylene	2024/04/24	NC		%	50
B349089	S2L	Method Blank	Initial pH of Sample	2024/04/25	4.96		pН	
			pH after HCl	2024/04/25	NA		pН	
			Final pH of Leachate	2024/04/25	4.94		pН	
			pH of Leaching Fluid	2024/04/25	4.96		pН	
B349089	S2L	RPD	Initial pH of Sample	2024/04/25	0.58		%	N/A
			pH after HCl	2024/04/25	3.2		%	N/A
			Final pH of Leachate	2024/04/25	0.41		%	N/A
B350475	RLC	Matrix Spike	pH of Leaching Fluid Leachate Antimony (Sb)	2024/04/25 2024/04/25	0	107	% %	N/A 75 - 125
		[CML385-02]		2024/24/5-		404	0.0	75 4
			Leachate Arsenic (As)	2024/04/25		104	%	75 - 125
			Leachate Barium (Ba)	2024/04/25		98	%	75 - 125
			Leachate Beryllium (Be)	2024/04/25		105	%	75 - 125
			Leachate Boron (B)	2024/04/25		106	%	75 - 125
			Leachate Cadmium (Cd)	2024/04/25		102	%	75 - 12
			Leachate Chromium (Cr)	2024/04/25		100	%	75 - 12
			Leachate Cobalt (Co)	2024/04/25		98	%	75 - 12
			Leachate Copper (Cu)	2024/04/25		94	%	75 - 12
			Leachate Iron (Fe)	2024/04/25		102	%	75 - 12
			Leachate Lead (Pb)	2024/04/25		100	%	75 - 12
			Leachate Mercury (Hg)	2024/04/25		104	%	75 - 12
			Leachate Molybdenum (Mo)	2024/04/25		105	%	75 - 12

Page 12 of 18

Sampler Initials: JG

QUALITY ASSURANCE REPORT(CONT'D)

0.100								
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Leachate Nickel (Ni)	2024/04/25		97	%	75 - 125
			Leachate Selenium (Se)	2024/04/25		105	%	75 - 125
			Leachate Silver (Ag)	2024/04/25		98	%	75 - 125
			Leachate Thallium (TI)	2024/04/25		103	%	75 - 125
			Leachate Uranium (U)	2024/04/25		100	%	75 - 125
			Leachate Vanadium (V)	2024/04/25		107	%	75 - 125
			Leachate Zinc (Zn)	2024/04/25		95	%	75 - 125
			Leachate Zirconium (Zr)	2024/04/25		108	%	75 - 125
B350475	RLC	Spiked Blank	Leachate Antimony (Sb)	2024/04/25		104	%	75 - 125
			Leachate Arsenic (As)	2024/04/25		107	%	75 - 125
			Leachate Barium (Ba)	2024/04/25		103	%	75 - 125
			Leachate Beryllium (Be)	2024/04/25		105	%	75 - 125
			Leachate Boron (B)	2024/04/25		106	%	75 - 125
			Leachate Cadmium (Cd)	2024/04/25		104	%	75 - 125
			Leachate Chromium (Cr)	2024/04/25		105	%	75 - 125
			Leachate Cobalt (Co)	2024/04/25		103	%	75 - 125
			Leachate Copper (Cu)	2024/04/25		100	%	75 - 125
			Leachate Iron (Fe)	2024/04/25		106	%	75 - 125
			Leachate Lead (Pb)	2024/04/25		102	%	75 - 125
			Leachate Mercury (Hg)	2024/04/25		106	%	75 - 125
			Leachate Molybdenum (Mo)	2024/04/25		105	%	75 - 125
			Leachate Nickel (Ni)	2024/04/25		99	%	75 - 12 5
			Leachate Selenium (Se)	2024/04/25		107	%	75 - 125
			Leachate Silver (Ag)	2024/04/25		99	%	75 - 125
			Leachate Thallium (TI)	2024/04/25		106	%	75 - 125
			Leachate Triallium (T)	2024/04/25		100	%	75 - 125 75 - 125
			Leachate Vanadium (V)	2024/04/25		111	%	75 - 125 75 - 125
						101	%	75 - 125 75 - 125
			Leachate Zinc (Zn)	2024/04/25				
B350475	RLC	Markland Diamir	Leachate Zirconium (Zr)	2024/04/25	<0.10	110	%	75 - 125
8330473	KLC	Method Blank	Leachate Antimony (Sb)	2024/04/25	<0.10		mg/L	
			Leachate Arsenic (As)	2024/04/25	<0.10		mg/L	
			Leachate Barium (Ba)	2024/04/25	<0.10		mg/L	
			Leachate Beryllium (Be)	2024/04/25	<0.10		mg/L	
			Leachate Boron (B)	2024/04/25	<0.10		mg/L	
			Leachate Cadmium (Cd)	2024/04/25	<0.10		mg/L	
			Leachate Chromium (Cr)	2024/04/25	<0.10		mg/L	
			Leachate Cobalt (Co)	2024/04/25	<0.10		mg/L	
			Leachate Copper (Cu)	2024/04/25	<0.10		mg/L	
			Leachate Iron (Fe)	2024/04/25	<0.50		mg/L	
			Leachate Lead (Pb)	2024/04/25	<0.10		mg/L	
			Leachate Mercury (Hg)	2024/04/25	<0.0020		mg/L	
			Leachate Molybdenum (Mo)	2024/04/25	<0.10		mg/L	
			Leachate Nickel (Ni)	2024/04/25	<0.10		mg/L	
			Leachate Selenium (Se)	2024/04/25	< 0.10		mg/L	
			Leachate Silver (Ag)	2024/04/25	< 0.010		mg/L	
			Leachate Thallium (TI)	2024/04/25	< 0.10		mg/L	
			Leachate Uranium (U)	2024/04/25	< 0.10		mg/L	
			Leachate Vanadium (V)	2024/04/25	< 0.10		mg/L	
			Leachate Zinc (Zn)	2024/04/25	<0.10		mg/L	
			Leachate Zirconium (Zr)	2024/04/25	<0.10		mg/L	
B359234	éGP	Spiked Blank	37CL4 2378 Tetra CDD	2024/05/01	_,	57	%	35 - 197
			C13-1234678 HeptaCDD	2024/05/01		62	%	23 - 140
			C13-1234678 HeptaCDF	2024/05/01		57	%	28 - 143
			213 123 TO / O HEPTUCOI	2027/03/01		37		

Page 13 of 18

Sampler Initials: JG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			C13-123478 HexaCDF	2024/05/01		59	%	26 - 152
			C13-1234789 HeptaCDF	2024/05/01		65	%	26 - 138
			C13-123678 HexaCDD	2024/05/01		56	%	28 - 130
			C13-123678 HexaCDF	2024/05/01		58	%	26 - 123
			C13-12378 PentaCDD	2024/05/01		67	%	25 - 181
			C13-12378 PentaCDF	2024/05/01		55	%	24 - 185
			C13-123789 HexaCDF	2024/05/01		62	%	29 - 147
			C13-234678 HexaCDF	2024/05/01		59	%	28 - 136
			C13-23478 PentaCDF	2024/05/01		59	%	21 - 178
			C13-2378 TetraCDD	2024/05/01		53	%	25 - 164
			C13-2378 TetraCDF	2024/05/01		61	%	24 - 169
			C13-OCDD	2024/05/01		59	%	17 - 157
			2,3,7,8-Tetra CDD	2024/05/01		109	%	67 - 158
			1,2,3,7,8-Penta CDD	2024/05/01		95	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2024/05/01		98	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2024/05/01		100	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2024/05/01		105	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2024/05/01		99	%	70 - 140
			Octa CDD	2024/05/01		99	%	78 - 144
			2,3,7,8-Tetra CDF	2024/05/01		104	%	75 - 1 58
			1,2,3,7,8-Penta CDF	2024/05/01		102	%	80 - 134
			2,3,4,7,8-Penta CDF	2024/05/01		99	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2024/05/01		97	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2024/05/01		98	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2024/05/01		101	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2024/05/01		102	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2024/05/01		97	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2024/05/01		93	%	78 - 138
			Octa CDF	2024/05/01		101	%	63 - 170
B359234	éGP	RPD	2,3,7,8-Tetra CDD	2024/05/01	0		%	25
			1,2,3,7,8-Penta CDD	2024/05/01	1.1		%	25
			1,2,3,4,7,8-Hexa CDD	2024/05/01	1.0		%	25
			1,2,3,6,7,8-Hexa CDD	2024/05/01	3.0		%	25
			1,2,3,7,8,9-Hexa CDD	2024/05/01	2.8		%	25
			1,2,3,4,6,7,8-Hepta CDD	2024/05/01	3.0		%	25
			Octa CDD	2024/05/01	0		%	25
			2,3,7,8-Tetra CDF	2024/05/01	4.7		%	25
			1,2,3,7,8-Penta CDF	2024/05/01	1.9		%	25
			2,3,4,7,8-Penta CDF	2024/05/01	0		%	25
			1,2,3,4,7,8-Hexa CDF	2024/05/01	4.0		%	25
			1,2,3,6,7,8-Hexa CDF	2024/05/01	3.0		%	25
			2,3,4,6,7,8-Hexa CDF	2024/05/01	6.7		%	25
			1,2,3,7,8,9-Hexa CDF	2024/05/01	6.6		%	25
			1,2,3,4,6,7,8-Hepta CDF	2024/05/01	7.0		%	25
			1,2,3,4,7,8,9-Hepta CDF	2024/05/01	11		%	25
			Octa CDF	2024/05/01	6.7		%	25
B359234	éGP	Method Blank	37CL4 2378 Tetra CDD	2024/05/01		70	%	35 - 197
			C13-1234678 HeptaCDD	2024/05/01		86	%	23 - 140
			C13-1234678 HeptaCDF	2024/05/01		82	%	28 - 143
			C13-123478 HexaCDD	2024/05/01		72	%	32 - 141
			C13-123478 HexaCDF	2024/05/01		72	%	26 - 152
			C13-1234789 HeptaCDF	2024/05/01		94	%	26 - 138
			C13-123678 HexaCDD	2024/05/01		72	%	28 - 130
			C13-123678 HexaCDF	2024/05/01		70	%	26 - 123

Page 14 of 18

Sampler Initials: JG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Dattii	mit	ес туре	C13-12378 PentaCDD	2024/05/01	value	79	%	25 - 181
			C13-12378 PentaCDF	2024/05/01		73	%	24 - 185
			C13-123789 HexaCDF	2024/05/01		80	%	29 - 147
			C13-234678 HexaCDF	2024/05/01		73	%	28 - 136
			C13-23478 PentaCDF	2024/05/01		73	%	21 - 178
			C13-2378 TetraCDD	2024/05/01		61	%	25 - 164
			C13-2378 TetraCDF	2024/05/01		77	%	24 - 169
			C13-OCDD	2024/05/01		85	%	17 - 157
			2,3,7,8-Tetra CDD	2024/05/01	<0.680, EDL=0.680		pg/g	
			1,2,3,7,8-Penta CDD	2024/05/01	<0.644, EDL=0.644		pg/g	
			1,2,3,4,7,8-Hexa CDD	2024/05/01	<0.699, EDL=0.699		pg/g	
			1,2,3,6,7,8-Hexa CDD	2024/05/01	1.99, EDL=0.672		pg/g	
			1,2,3,7,8,9-Hexa CDD	2024/05/01	5.24, EDL=0.679		pg/g	
			1,2,3,4,6,7,8-Hepta CDD	2024/05/01	7.04, EDL=0.762		pg/g	
			Octa CDD	2024/05/01	4.97, EDL=0.607		pg/g	
			Total Tetra CDD	2024/05/01	20.8, EDL=0.680 (1)		pg/g	
			Total Penta CDD	2024/05/01	28.2, EDL=0.644 (1)		pg/g	
			Total Hexa CDD	2024/05/01	37.5, EDL=0.683 (1)		pg/g	
			Total Hepta CDD	2024/05/01	23.1, EDL=0.762		pg/g	
			2,3,7,8-Tetra CDF	2024/05/01	<0.627, EDL=0.627		pg/g	
			1,2,3,7,8-Penta CDF	2024/05/01	<0.692, EDL=0.692		pg/g	
			2,3,4,7,8-Penta CDF	2024/05/01	<0.639, EDL=0.639		pg/g	
			1,2,3,4,7,8-Hexa CDF	2024/05/01	<0.686, EDL=0.686		pg/g	
			1,2,3,6,7,8-Hexa CDF	2024/05/01	<0.680, EDL=0.680		pg/g	
			2,3,4,6,7,8-Hexa CDF	2024/05/01	<0.686, EDL=0.686		pg/g	
			1,2,3,7,8,9-Hexa CDF	2024/05/01	<0.756, EDL=0.756		pg/g	
			1,2,3,4,6,7,8-Hepta CDF	2024/05/01	<0.641, EDL=0.641		pg/g	
			1,2,3,4,7,8,9-Hepta CDF	2024/05/01	<0.690, EDL=0.690		pg/g	
			Octa CDF	2024/05/01	<0.661, EDL=0.661		pg/g	
			Total Tetra CDF	2024/05/01	<0.627, EDL=0.627		pg/g	
			Total Penta CDF	2024/05/01	<0.664, EDL=0.664		pg/g	

Page 15 of 18

Sampler Initials: JG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Hexa CDF	2024/05/01	<0.699, EDL=0.699		pg/g	
			Total Hepta CDF	2024/05/01	<0.665, EDL=0.665		pg/g	
B359235	éGP	Method Blank	Confirmation C13-2378 TetraCDF	2024/05/01		57	%	40 - 135
			Confirmation 2,3,7,8-Tetra CDF	2024/05/01	<1.4, EDL=1.4		pg/g	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

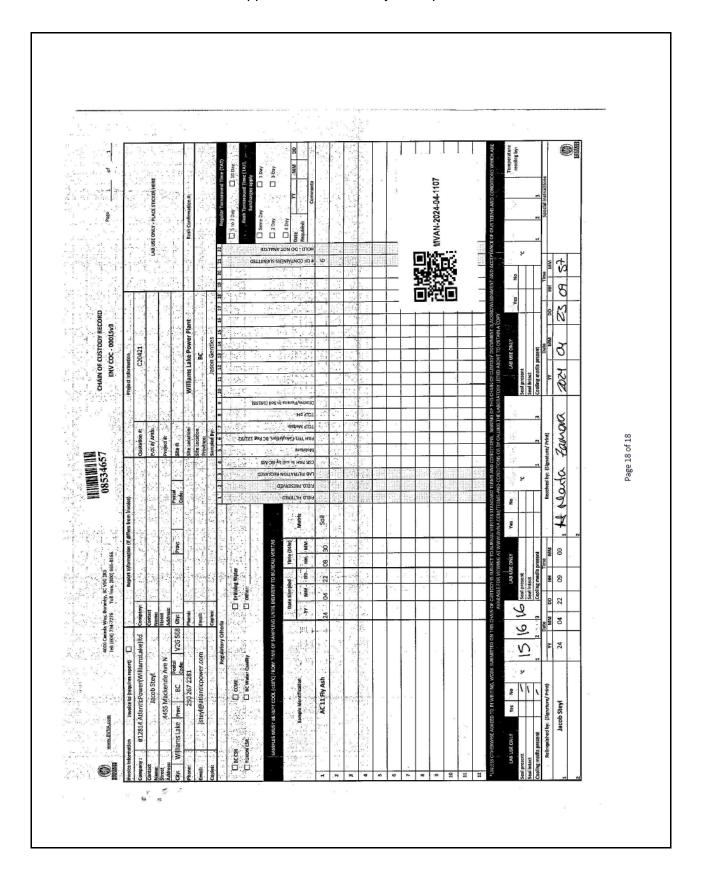
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).


(1) Conc in sample is 10x higher than method blank. Result is reportable with flag.

Page 16 of 18

Appendix B - Ash Analysis Reports

WALIDATION SIGNATURE PAGE The analytical data and all QC contained in this report were reviewed and validated by: Cathy Xu, Senior Analyst, HRMS Services, Senior Analyst, HRMS Services David Huang, M.Sc., P.Chem., QP, Scientific Services Manager Bureau Verita: has procedure, in place to guard against improper use of the electronic dignature and have the required "signatories", as per SO/EC 17025, digning the reports. For Service Group specific validation, please refer to the Validation Signature page if included, otherwise available by request. For Operatment specific Analys/LSupervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Rowan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations. Page 17 of 18	ureau Veritas Job #: C428023 eport Date: 2024/05/03	ATLANTIC POWER (WILLIAMS LAKE) LTD. Site Location: WILLIAMS LAKE POWER PLANT Sampler Initials: JG
Cathy Xu, Senior Analyst, HRMS Services, Senior Analyst, HRMS Services David Huang, M.Sc., P.Chem., QP, Scientific Services Manager Bureau Veritas has procedure in place to guard against Improper use of the electronic signature and have the required "signaturies", as per ISO/IEC 17025, signing the reports. For Smvice Group specific validation, neglesser refer to the Testiation. Signatures, pager if included, otherwise available by request. For Department specific Analyst/Supervice validation maney, because refer to the Testiation Signatures, pager if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations. Page 17 of 18	VAI	LIDATION SIGNATURE PAGE
David Huang, M.S.c., P.Chem., QP, Scientific Services Manager Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 1702S, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if Included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations. Page 17 of 18	The analytical data and all QC contained in this report were reviewed and validated by:	
David Huang, M.Sc., P.Chern., QP, Scientific Services Manager Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation on specific Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Superviolation names, please refer to the test Summary section included, otherwise available by request. This report is authorized by Raphael Rwan, Senior Manager, 6C and Yukon Regions responsible for British Columbia Environmental laboratory operations. Page 17 of 18	CCM.	
Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.	Cathy Xu, Senior Analyst, HRMS Services, Senior Analyst, HR	tMS Services
Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.	A De la company	
reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Superdisor validation amase, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.	David Huang, M.Sc., P.Chem., QP, Scientific Services Manage	er er
reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Superdisor validation ames, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.		
	reports. For Service Group specific validation, please refer to the Vali Analyst/Supervisor validation names, please refer to the Test Summa	idation Signatures page if included, otherwise available by request. For Department specific ary section if included, otherwise available by request. This report is authorized by Raphael Kwan,
Bureau Veritas Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386	Burgası Vərinəs Burnahur A	

